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Principal Feature Classification
Qi Li and Donald W. Tufts

Abstract—The concept, structures, and algorithms of principal
feature classification (PFC) are presented in this paper. PFC
is intended to solve complex classification problems with large
data sets. A PFC network is designed by sequentially finding
principal features and removing training data which has already
been correctly classified. PFC combines advantages of statistical
pattern recognition, decision trees, and artificial neural networks
(ANN’s) and provides fast learning with good performance and
a simple network structure. For the real-world applications of
this paper, PFC provides better performance than conventional
statistical pattern recognition, avoids the long training times
of backpropagation and other gradient-decent algorithms for
ANN’s, and provides a low-complexity structure for realiza-
tion.

Index Terms—Statistical pattern recognition, neural networks,
decision trees, discriminant analysis, classification, signal process-
ing.

I. INTRODUCTION

A PRINCIPAL FEATURE is a discriminant function which
is intended to provide the maximum contribution to

correct classification using a current training data set.
Principal feature classification(PFC) is based on a se-

quential procedure for finding principal features. After a new
principal feature is found, the correctly classified vectors
of the current training data are removed so that the next
principal feature can best contribute to improve classification,
rather than redundantly reclassify some of the already well-
classified training vectors. PFC can also be considered as a
nonparametric statistical approach for classification.

The procedure for finding principle features in PFC is
analogous to a method for sequentially finding principal-
component basis vectors [1]. Successive determination of
principal features and associated, successive pruning of the
training data are naturally different from the analogous steps
for the principal components used in statistical pattern recog-
nition because the PFC criterion, namely improvement in
classification performance, is different from the mean-squared
fitting error criterion of principal components. PFC provides
a systematic method to sequentially select subsets of train-
ing data to compute the features, which was unsolved in a
statistical feature approach [2].

A lot of work has been done in feature extraction and se-
lection using both neural networks and traditional approaches
(see [3] for a comparative study). Feature extraction focuses
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on reducing the dimensions of data; PFC focuses on removing
subset of classifiable training data although feature extraction
can be included in a PFC design without much additional
calculation. PFC is suitable for the training problems with
large data sets.

PFC does not need gradient-descent algorithms which have
the local minimum and long training time problems as in
backpropagation and many training algorithms; PFC does not
need a backward node “pruning” (we use the term simplifica-
tion in this paper for node pruning) as in a classification and
regression tree (CART) [4] and neural tree network [5], or a
node “pruning” by retraining (see [6] for a survey). PFC can be
implemented either as a decision tree or as a neural network.
For the above reasons, PFC can be considered as a fast and
efficient algorithm for both neural network and decision tree
design for classification.

Example 1—An Illustrative Example for the Design Procedure

We use the two labeled classes of artificial training data
in Fig. 1(a) to better specify the procedure of finding prin-
cipal features and pruning the training data. We sequentially
find principal features and associated hidden nodes at each
stage by selecting the best of the following two methods for
choosing the next feature: 1) Fisher’s linear discriminant anal-
ysis (LDA) [1], [7], [8] and 2) maximal signal-to-noise-ratio
(SNR) discriminant analysis(see Section III-A). A special
method for determining multiple thresholds associated with
these features has been developed by us [9] and is used in
evaluating the effectiveness of candidate features. Although
more complicated features, such as those from multivariate
Gaussian [1], multivariate Gaussian mixture [10], or radial
basis functions [11] can be used, the above two features are
simple, complementary, and efficient.

In the first step, we use all the training data in the input space
of Fig. 1(a) to find a principal feature. In this step, Fisher’s
LDA gave a good result. The corresponding feature can be
calculated by an inner product of the data vector with the LDA
weight vector. The hyperplanes perpendicular to the vector
are shown in Fig. 1(b). It is important to note that multiple
threshold values can be used with each feature. Then, the
data vectors which have been classified at this step of the
design procedure are pruned off. Here, two threshold values
have been used. Thus the unclassified data between the two
corresponding hyperplanes are used to train the second hidden
node. The residual training data set for the next design stage
is shown in Fig. 1(c). This is used to determine the second
feature and second hidden node. Since the mean vectors of
the two classes are very close now, Fisher’s LDA does not
give a satisfactory principal feature. In the second hidden node
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(a) (b)

(c) (d)

Fig. 1. (a) The original training data of two labeled classes which are not linearly separable. (b) The hyperplanes of the first hidden node (LDA node).
(c) The residual data set and the hyperplanes of the second hidden node (SNR node). (d) The input space partitioned by two hidden nodes and four
thresholds designed by the PFC method.

design, maximal SNR analysis provides a better candidate for
a principal feature and the threshold-setting procedure in [9]
gives us two associated hyperplanes which are also shown
in Fig. 1(c). The overall partitioned regions are shown in
Fig. 1(d). All of the training data vectors have now been
correctly classified. The size of training data, the performance
specifications, and the need to generalize to new, test data
influence the threshold settings and the stopping point of the
design.

For this simple classification problem, the backpropagation
(BP) training method [12] takes hundreds of seconds to hours,
and one still does not get satisfactory classification using a
multilayer perceptron (MLP) network with five hidden nodes
and one output node, sum-squared error (SSE)4.35. The
radial basis function network (RBF) with common kernel
functions [12] can converge to an acceptable performance
in 35 s, but it needs 56 nodes, SSE 0.13. On the same
problem, the principal feature classification only takes 0.2
s on a same machine and needs only two hidden nodes in

a sequential implementation, Fig. 5(b). The performance of
principal feature network (PFN) is better than both BP and
RBF, SSE 0.00.

II. THE IMPLEMENTATION OF A PRINCIPAL FEATURE NETWORK

A principal feature network is an artificial neural network
(ANN) in which each hidden node computes the value of
a principal feature and compares this value with multiple
threshold values. A parallel implementation of the PFN is
shown in Fig. 2. The outputs of the hidden-layer are binary
words. Each word represents one partitioned region in the input
data space. Each class may have more than one hidden-layer
word. The outputs of the output-layer are binary words too,
which are logic functions of the hidden-layer words, but each
class is only represented by one unique output binary word.

Each hidden node threshold is labeled to one class, and the
associated hyperplane partitions the input space intoclassified
and unclassified regionsfor that class. All or nearly all of
the training vectors within a classified region belong to the
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Fig. 2. A parallel implementation of PFC by a PFN.

labeled class. The corresponding unclassified region includes
the training vectors which have not been correctly classified
yet. Generally speaking, eachhidden nodeis a subclassifier in
the PFN. It classifies part of the training vectors and leaves
the unclassified vectors to other hidden nodes.

This interpretation leads us to the decision-tree implementa-
tion of Fig 3. We note that each hidden node can have multiple
thresholds, thus more than one classification decision can be
made in one node of the tree, e.g., Fig 5(b). In sequence,
the hidden nodes will be evaluated in the order that they
are trained. Since each hidden node binary threshold output
has been associated with one class in training, the sequential
calculation stops as soon as a decision can be made. Since
the first few hidden nodes are designed using the highest
density regions in the input training space, it is very likely
that a decision can be made early in the procedure. This is
an advantage over multilayer perceptron (MLP) networks and
conventional decision trees.

Example 1 (Continued)—Parallel and
Sequential Implementations

Parallel and sequential implementations of the designed PFC
are shown in Fig. 4(b) and 5(b). Corresponding partitioned
input spaces are shown in Fig. 4(a) and 5(a). For details on
parallel and processor-array implementations, please refer to
[9] and [13].

III. H IDDEN-NODE DESIGN

A. Maximum SNR Hidden Node Design

When the mean vectors of training classes are far enough
apart, Fisher’s node is effective. However, when the mean
vectors of the training classes are too close, Fisher’s LDA
does not provide good classification. Then one can use the
quadratic Gaussian discriminant [1], or the following simple
discriminant which can be used for non-Gaussian data and

Fig. 3. A sequential implementation of PFC by a principal feature tree.

(a)

(b)

Fig. 4. (a) Partitioned input space for parallel implementation. (b) Parallel
implementation.

often has almost the same discriminant capability as the
quadratic Gaussian discriminant when the data vector are
multivariate Gaussian. A proof was given by us in [14].

To design a robust quadratic node for possibly non-Gaussian
data, we choose a weight vectorto maximize a discriminant
SNR

(1)

where is the covariance matrix calculated from Class
which has the largest eigenvalue among the eigenvalues

calculated from the sample covariance matrices of each class,
respectively, and is the covariance matrix calculated from
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(a)

(b)

Fig. 5. (a) Partitioned input space for sequential implementation. (b) Se-
quential (tree) implementation.

pooled data of all other classes. The weight vectorcan be
determined by solving a generalized eigenvalue and eigenvec-
tor problem, i.e., The maximum SNR node has
been used to classify overlapped Gaussian data [14].

B. Determining the Thresholds from Design Specifications

After a weight vector is obtained by LDA or by maximum
SNR analysis, all current training vectors are projected to
the weight vector. The histograms of projected data of all
classes are evaluated. The classes on the far right and far
left on the vector can be separated by determining thresholds.
The thresholds and separated regions are then labeled to the
separated classes.

A technique for determining thresholds from design speci-
fications, i.e., performance requirements for every class, was
developed by us and was applied in all of the examples and
applications of this paper. Due to limited space, interested
readers are referred to [9] for the details of this procedure.

IV. SIMPLIFICATION OF THE HIDDEN NODES

Due to the PFN architecture and the training algorithm,
pruning of the PFN hidden nodes is simpler than the pruning
algorithms for MLP networks. We developed two kinds of
pruning algorithms for different applications, lossless and lossy
simplifications.Lossless simplificationis for a minimal imple-
mentation;lossy simplificationis for improving the ability of
the network to generalize, that is, to perform well on new data
sets. To avoid confusion with the data pruning described in

the above sections, we use the term simplification. Generally
speaking, lossy simplification is needed for most applications.
Readers are referred to [9] for lossless simplification.

During PFN training, each threshold is labeled to a class
which is associated with that threshold. We recall that each
hidden node can have more than one threshold associated with
separated classes. Also, the percentage of the training vectors
of each class classified by each threshold in the sequential
design are saved in an array. The array called thecontribution
array is used for simplification analysis. We use the following
example to illustrate the details.

Application 1—Signal Recognition

In a real signal recognition application, a large set of
multidimensional training vectors of 10 classes was completely
classified by a PFN using 49 hidden nodes and 98 thresholds.
The contribution of each threshold to its labeled class, in term
of percentage of classification rate, is saved in a contribution
array. The array was sorted and plotted in Fig. 6(a). From the
Fig. 6(a), we can see that only a few of the thresholds have
significant contribution to full recognition of their classes. The
accumulated network performance in the order of the sorted
thresholds is shown in Fig. 6(b). The more thresholds we keep,
the higher the network accuracy we can obtain on the training
data set, but keeping those thresholds which provide little
contribution can affect the ability of the designed network
to generalize to new data. In other words, using all of these
thresholds may not lead to good performance on the test data
set.

In the simplification procedure we seek to attain a desired
network performance which comes from the design specifica-
tions. This value is used to prune thresholds. In this example,
the desired network performance is 92% correct decisions. A
horizontal dash-dot line in Fig. 6(b) marks the desired 92%
accuracy. The line has an intersection with the curve of the
accumulated network performance. By projecting the inter-
section onto the Fig. 6(a) as the vertical broken line in both
Fig. 6(a) and (b), a necessary number of thresholds to meet
the desired network performance can be determined. For this
example, the first 38 thresholds in Fig. 6(a) can meet the 92%
network accuracy as requested in the design specifications.
Thus thresholds 39 to 98 in the sorted contribution array can
be deleted.

If all of the thresholds associated with a hidden node
have been deleted, then that hidden node should also be
deleted. After this lossy simplification, the designed PFN has
a performance of 91% on the training set and 88% on the
test set using 31 hidden nodes and 38 thresholds. Thus, the
performance on the test set is close to the performance on the
training set.

V. APPLICATION 2—LAND COVER

RECOGNITION FROM MULTISPECTRAL IMAGES

We applied the principal feature classification to recognize
categories of land cover from three images of Block Island,
RI, corresponding to three spectral bands—two visible and one
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(a)

(b)

Fig. 6. (a) The sorted contribution of each threshold in the order of its contribution to the class separated by the threshold. (b) Accumulated network
performance in the order of the sorted thresholds.

TABLE I
COMPARISON OF THREE ALGORITHMS IN THE LAND COVER RECOGNITION

infrared. Each complete image has 45917754 pixels. Each
pixel has a resolution of 1.27 m and belongs to one of 14
categories of land covers.

The training data set is a matrix which is formed from a
subset of pixels which have been labeled. Each row is one
training vector which has nine feature elements associated with
one pixel [15], and each of these vectors was labeled with one
of 14 land cover categories. The nine features of data vectors
consist of pixel intensity in the three color bands, three local
standard deviations of intensity in a diameter of 10 m floating
window around the row-designated pixel (one for each color),
and three additional features from the side information of a
soil database. These features are degree of local slope at the
designated pixel, aspect of the slope at the designated pixel,

and drainage class of soil. In [15], Duhaime identified the 14
categories of land covers for supervised training.

The computer experiments on the multispectral image fea-
tures started by using backpropagation and RBF algorithms
[12]. However, both of them did not get the needed classi-
fication results in a reasonable amount of time as estimated
from their convergence speeds. Then the proposed PFN and
a modified RBF algorithm [16] were applied to solve the
problem. The experimental results are listed in Table I and
compared with one another.

The MRBF method used a training data set of 140 sample
vectors (limited by memory space), 10 from each category,
and tested on a test data set of 700 samples, 50 samples from
each category. It gets an average accuracy of 60% on the test
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set for all of the 14 categories defined above. The training
took 518 s central processing unit (CPU) time on a Sun Sparc
IPX workstation. The PFN is trained by 700 training vectors
since the PFN can be trained with much less memory space. It
took only 58 s CPU time and reached an average performance
of 72% on the same test set and on all 14 categories. (The
performance is 65% if using the 140 sample set for training.)
The performance of LDA was reported in [15]. It is 55%
on an average of 11 categories out of all the 14 categories
based on different training and test data sets. The simulation
software was written in an interpretive language for both PFN
and MRBF. The CPU time can be much less by using C or
Fortran.

VI. CONCLUSIONS

Principal feature networks have been compared in exper-
iments with popular neural networks, such as BP and RBF.
It was also compared with many constructive algorithms
[9], such as cascade-correlation architecture, decision tree
algorithms, etc. Generally speaking, the PFC possesses the
advantages of the constructive algorithms. It can get 100%
accuracy on training set when it is needed. By applying
multivariate statistical analysis in defining and training hidden
nodes, the classifier can be trained much faster than gradient-
descent or other iterative algorithms. The over-fitting problem
which results from requiring too much classification accuracy
on the training data is solved by appropriately pruning thresh-
olds using the design specifications, and thus generalization to
new test data can be realized by lossy simplification. PFC has
been applied to real-world classification problems with large
data sets. Compared with other algorithms, it has the same or
better performance, needs much less CPU time in training, and
uses simpler structures for implementation.
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