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Robust Endpoint Detection and Energy Normalization
for Real-Time Speech and Speaker Recognition
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Abstract—When automatic speech recognition (ASR) and
speaker verification (SV) are applied in adverse acoustic envi-
ronments, endpoint detection and energy normalization can be
crucial to the functioning of both systems. In low signal-to-noise
ratio (SNR) and nonstationary environments, conventional ap-
proaches to endpoint detection and energy normalization often
fail and ASR performances usually degrade dramatically. The
purpose of this paper is to address the endpoint problem. For
ASR, we propose a real-time approach. It uses an optimal filter
plus a three-state transition diagram for endpoint detection. The
filter is designed utilizing several criteria to ensure accuracy
and robustness. It has almost invariant response at various
background noise levels. The detected endpoints are then applied
to energy normalization sequentially. Evaluation results show that
the proposed algorithm significantly reduces the string error rates
in low SNR situations. The reduction rates even exceed 50% in
several evaluated databases. For SV, we propose a batch-mode
approach. It uses the optimal filter plus a two-mixture energy
model for endpoint detection. The experiments show that the
batch-mode algorithm can detect endpoints as accurately as using
HMM forced alignment while the proposed one has much less
computational complexity.

Index Terms—Change-point detection, edge detection, endpoint
detection, optimal filter, robust speech recognition, speaker verifi-
cation, speech activity detection, speech detection.

I. INTRODUCTION

I N SPEECH and speaker recognition, we need to process the
signal in utterances consisting of speech, silence, and other

background noise. The detection of the presence of speech em-
bedded in various types of nonspeech events and background
noise is calledendpoint detection, speech detection, or speech
activity detection. In this paper, we address endpoint detection
by sequential and batch-mode processes to support real-time
recognition (in which the recognition response is the same as
or faster than recording an utterance). The sequential process
is often used in automatic speech recognition (ASR) [1] while
the batch-mode process is often allowed in speaker recognition
[2], name dialing [3], command control and embedded systems,
where utterances are usually as short as a few seconds and the
delay in response is usually small.

Endpoint detection has been studied for several decades. The
first application was in a telephone transmission and switching
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system developed in Bell Labs, for time assignment of commu-
nication channels [4]. The principle was to use the free channel
time to interpolate additional speakers by speech activity de-
tection. Since then, various speech detection algorithms have
been developed for ASR, speaker verification, echo cancella-
tion, speech coding and other applications. In general, different
applications need different algorithms to meet their specific re-
quirements in terms of computational accuracy, complexity, ro-
bustness, sensitivity, response time, etc. The approaches include
those based on energy threshold (e.g., [5]), pitch detection (e.g.,
[6]), spectrum analysis, cepstral analysis [7], zero-crossing rate
[8], [9], periodicity measure, hybrid detection [10], fusion [11]
and many other methods. Furthermore, similar issues have also
been studied in other research areas, such as edge detection in
image processing [12], [13] and change-point detection in the-
oretical statistics [14]–[18].

As is well-known, endpoint detection is crucial to both ASR
and speaker recognition because it often affects a system’s per-
formance in terms of accuracy and speed for several reasons.
First, cepstral mean subtraction (CMS) [19]–[21], a popular al-
gorithm for robust speaker and speech recognition, needs accu-
rate endpoints to compute the mean of speech frames precisely
in order to improve recognition accuracy. Second, if silence
frames can be removed prior to recognition, the accumulated ut-
terance likelihood scores will focus more on the speech portion
of an utterance instead of on both noise and speech. Therefore,
it has the potential to increase recognition accuracy. Third, it
is hard to model noise and silence accurately in changing envi-
ronments. This effect can be limited by removing background
noise frames in advance. Fourth, removing nonspeech frames
when the number of nonspeech frames is large can significantly
reduce the computation time. Finally, for open speech recog-
nition systems, such as open-microphone desktop applications
and audio transcription of broadcast news, it is necessary to seg-
ment utterances from continuous audio input.

In applications of speech and speaker recognition, nonspeech
events and background noise complicate the endpoint detection
problem considerably. For example, the endpoints of speech are
often obscured by speaker-generated artifacts such as clicks,
pops, heavy breathing, or by dial tones. Long-distance telephone
transmission channels also introduce similar types of artifacts
and background noise. In recent years, as wireless, hands-free
and Internet Protocol (IP) phones get more and more popular,
the endpoint detection problem becomes even more difficult
since the signal-to-noise ratios (SNR) of these kinds of commu-
nication devices are usually lower and the noise is nonstationary
than those in traditional telephone lines and handsets. The noise
may come from the background, such as car noise, room reflec-
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Fig. 1. (a) The original training data of two labeled classes which are not linearly separable. (b) The hyperplanes of the first hidden node (LDA node).
(c) The residual data set and the hyperplanes of the second hidden node (SNR node). (d) The input space partitioned by two hidden nodes and four
thresholds designed by the PFC method.

design, maximal SNR analysis provides a better candidate for
a principal feature and the threshold-setting procedure in [9]
gives us two associated hyperplanes which are also shown
in Fig. 1(c). The overall partitioned regions are shown in
Fig. 1(d). All of the training data vectors have now been
correctly classified. The size of training data, the performance
specifications, and the need to generalize to new, test data
influence the threshold settings and the stopping point of the
design.

For this simple classification problem, the backpropagation
(BP) training method [12] takes hundreds of seconds to hours,
and one still does not get satisfactory classification using a
multilayer perceptron (MLP) network with five hidden nodes
and one output node, sum-squared error (SSE)4.35. The
radial basis function network (RBF) with common kernel
functions [12] can converge to an acceptable performance
in 35 s, but it needs 56 nodes, SSE 0.13. On the same
problem, the principal feature classification only takes 0.2
s on a same machine and needs only two hidden nodes in

a sequential implementation, Fig. 5(b). The performance of
principal feature network (PFN) is better than both BP and
RBF, SSE 0.00.

II. THE IMPLEMENTATION OF A PRINCIPAL FEATURE NETWORK

A principal feature network is an artificial neural network
(ANN) in which each hidden node computes the value of
a principal feature and compares this value with multiple
threshold values. A parallel implementation of the PFN is
shown in Fig. 2. The outputs of the hidden-layer are binary
words. Each word represents one partitioned region in the input
data space. Each class may have more than one hidden-layer
word. The outputs of the output-layer are binary words too,
which are logic functions of the hidden-layer words, but each
class is only represented by one unique output binary word.

Each hidden node threshold is labeled to one class, and the
associated hyperplane partitions the input space intoclassified
and unclassified regionsfor that class. All or nearly all of
the training vectors within a classified region belong to the
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