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Abstract— An auditory-based feature extraction algorithm is
presented. We name the new features as cochlear filter cepstral
coefficients (CFCC) which are defined based on a recently
developed auditory transform (AT) plus a set of modules to
emulate the signal processing functions in the cochlea. The
CFCC features are applied to a speaker identification task to
address the acoustic mismatch problem between training and
testing environments. Usually, the performance of acoustic models
trained in clean speech drops significantly when tested in noisy
speech. The CFCC features have shown strong robustness in
this kind of situation. In our experiments, the CFCC features
consistently perform better than the baseline MFCC features
under all three mismatched testing conditions – white noise, car
noise, and babble noise. For example, in clean conditions, both
MFCC and CFCC features perform similarly, over 96%, but
when the SNR of the input signal is 6 dB, the accuracy of the
MFCC features drops to 41.2%, while the CFCC features still
achieve an accuracy of 88.3%. The proposed CFCC features also
compare favorably to PLP and RASTA-PLP features. The CFCC
features consistently perform much better than PLP. Under white
noise, the CFCC features are significantly better than RASTA-
PLP, while under car and babble noise, the CFCC features
provide similar performances to RASTA-PLP.

Index Terms— Feature extraction algorithm, auditory-based
features, automatic speaker recognition, robust speaker recog-
nition, speaker identification, cochlea.

I. I NTRODUCTION

FEATURE extraction is the first crucial component in
automatic speech processing. Generally speaking, suc-

cessful front-end features should carry enough discriminative
information for classification or recognition, fit well withthe
back-end modeling, and be robust with respect to the changes
of acoustic environments. To the best of our knowledge,
obtaining a satisfactory system performance under various
operating modes still remains problematic, especially when
acoustic training and testing environments are mismatched.
Since the human hearing system is robust to the mismatched
conditions, we propose an auditory-based feature extraction
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algorithm that is modeled on the basic signal processing
functions in the ear. The proposed algorithm is also based on
our recently developed auditory-based time-frequency trans-
form named Auditory Transform (AT) [1], [2]. The features
generated from the proposed algorithm are named cochlear
filter cepstral coefficients (CFCC).

A. Traditional Speech Feature Extraction and the Fourier
Analysis

At a high level, most speech feature extraction methods fall
into the following two categories: modeling the human voice
production system or modeling the peripheral auditory system.

For the first approach, one of the most popular features is
a group of cepstral coefficients derived from linear prediction
known as the linear prediction cepstral coefficients (LPCC)
[3], [4]. The LPCC feature extraction utilizes an all-pole filter
to model the human vocal tract with speech formants captured
by the poles of the all-pole filter. The narrow band (e.g., up
to 4 KHz) LPCC features work well in a clean environment.
However, in our previous experiments, the linear predictive
spectral envelope shows large spectral distortion in noisy
environments [5], [6]. This results in significant performance
degradation.

For the second approach, there are two groups of features,
based on either Fourier transforms (FT) or auditory-based
transforms. Representative for the first group are the MFCCs
(Mel frequency cepstral coefficients), where a fast Fourier
transform (FFT) is applied to generate the spectrum in the
linear scale, and then a bank of band-pass filters is placed
along a Mel frequency scale on top of the FFT output [7].
Alternatively, the FFT output is warped to a Mel or Bark scale
and then a bank of band-pass filters is placed linearly on top of
the warped FFT output [5], [6]. The proposed algorithm in this
paper belongs to the second group, where the auditory-based
transform is defined as an invertible, time-frequency transform.
The output from this kind of transform can be in any kind of
frequency scale (e.g., linear, Bark, ERB, etc). Therefore,there
is no need to place the band-pass filter in a Mel scale as in
the MFCC or warp the frequency distributions as in [5], [6].

The MFCC features [7] in the first group are one of the
most popular features for speech and speaker recognition. Like
the LPCC features, the MFCC features perform well in clean
environments but not in adverse environments or mismatched
training and testing conditions. Perceptual linear predictive
(PLP) analysis is another peripheral auditory-based approach.



IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 2

Based on the FFT output, it uses several perceptually mo-
tivated transforms, including Bark frequency, equal-loudness
preemphasis, and cubic-root amplitude compression [8]. The
relative spectra, known as RASTA, is further developed to
filter the time trajectory to suppress constant factors in the
spectral component [9]. It is often cascaded with the PLP
feature extraction to form the RASTA-PLP features. Compar-
isons between MFCC and RASTA-PLP have been reported in
[10]. Further comparisons with the proposed CFCC features
in experiments will be given at the end of this paper.

Both MFCC and RASTA-PLP features are based on the
Fourier transform (FT). As mentioned above, the FT has a
fixed time-frequency resolution and a well-defined inverse
transform. Fast algorithms exist for both the forward transform
and the inverse transform. Despite its simplicity and efficient
computation algorithms, we believe that when applied to
speech processing the time-frequency decomposition mecha-
nism of the FT is different than the mechanism in the hearing
system. First, it uses fixed-length windows, which generate
pitch harmonics over the entire speech bands. Secondly, its
individual frequency bands are distributed linearly, which is
different from the distribution in the human cochlea. Further
wrapping is needed to convert to the Bark, MEL, or other
scales. Finally, in our recent study in [1], [2], we observed
that the FFT spectrogram has more noise distortion and
computation noise than an auditory-based transform which we
recently developed. One of the examples is shown in Fig. 4.
Thus, we find it necessary to develop a new feature extraction
algorithm based on the new auditory-based, time-frequency
transform [2] to replace the FT in speech feature extraction.

B. Auditory-Based Time-Frequency Analysis

The traveling wave of the basilar membrane (BM) in the
cochlea and its impulse response have been observed and
reported in the literature, such as [11], [12], [13], [14], [15],
[16], [17]. Moreover, the BM tuning and auditory filters
have also been studied in the literature [18], [19], [20], [21],
[22], [23]. Many electronic and mathematic models have been
defined to simulate the traveling wave, the auditory filters,and
the frequency responses of the BM [24], [25], [26], [27], [28],
[29], [30], [31], [32], [33], [34].

Based on the study of the human hearing system, Li
proposed an auditory-based, time-frequency transform (AT)
in [1], [2]. The new transform is comprised of a pairing of
a forward transform and an inverse transform. Through the
forward transform, the speech signal can be decomposed into
a number of frequency bands using a bank of cochlear filters.
The frequency distribution of the cochlear filters is similar to
the one in the cochlea and the impulse response of the filters
is similar to that of the travelling wave. Through the inverse
transform, the original speech signal can be reconstructedfrom
the decomposed band-pass signals. In [2], Li has presented
the proof of the inverse transform of the AT and validated the
inverse AT in experiments.

Compared to the FFT, the AT has flexible time-frequency
resolution and its frequency distribution can take on any
linear or nonlinear form. Therefore, it is easy to define the

distribution to be similar to that of the Bark, Mel, or ERB
scale, which is similar to the frequency distribution function
of the Basilar membrane. Most importantly, the proposed
transform has significant advantages in noise robustness and
can be free of the pitch harmonic distortion as plotted in [2]
and Fig. 4. Therefore, the AT provides a new platform for
feature extraction research. It forms the foundation for our
robust feature extraction algorithm.

In summary, the ultimate goal of this study is to develop
a practical, front-end speech feature extraction algorithm that
conceptually emulates the human peripheral hearing system
and uses the concept to achieve an improved noise robustness
performance under mismatched training and testing conditions.

The remainder of this paper is organized as follows: Sec-
tion II demonstrates the proposed auditory feature extraction
algorithm and provides an analytic study and discussion;
Section III studies the feature parameters using a development
dataset and presents the experimental results of the proposed
CFCC in comparison to other front-end features in a testing
dataset; finally, Section IV concludes the paper.

II. PROPOSEDAUDITORY-BASED FEATURE EXTRACTION

ALGORITHM

This section describes the structure of the proposed
auditory-based feature extraction algorithm and providesde-
tails of its computation. Although we would like to emulate
the human peripheral hearing system, the computational as-
pects must meet the requirements of real-time applications;
therefore, we will simulate only the most important features
of the human peripheral hearing system.

An illustrative block diagram of the proposed algorithm is
shown in Fig. 1. The proposed algorithm is intended to concep-
tually replicate the hearing system at a high level and consists
of the following modules: auditory transform implemented
by a cochlear filter bank, hair-cell function with windowing,
cubic-root nonlinearity, and discrete cosine transform (DCT).
A detailed description of each module follows.

Auditory 

Transform

Speech Hair Cell /

Windows

CFCC
DCT Non-Linearity

Fig. 1. Schematic diagram of the proposed auditory-based feature extraction
algorithm named cochlear filter cepstral coefficients (CFCC).

A. The Auditory Transform

The auditory transform in Fig. 1 is the forward transform
of a pair of invertible auditory-based transforms, as defined
and described by Li in [2]. It can be implemented as a
filter bank. As the foundation of the auditory-based feature
extraction algorithm, we use the forward auditory transform
to replace the Fast Fourier transform used in many other
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features. The auditory transform models the traveling wave
in the cochlea where the sound waveform is decomposed into
a set of subband signals.

Let f(t) be a speech signal. A transform off(t) with respect
to a cochlear filterψ(t), representing the basilar membrane
(BM) impulse response in the cochlea, is defined as:

T (a, b) = f(t) ∗
1

√

|a|
ψ

(

t− b

a

)

dt, (1)

where∗ denotes the convolution operation,a and b are real,
bothf(t) andψ(t) belong toL2(R), andT (a, b) representing
the traveling waves in the BM is the decomposed signal and
filter output. The above equation can also be written as:

T (a, b) = f(t) ∗ ψa,b(t) dt, (2)

where

ψa,b(t) =
1

√

|a|
ψ

(

t− b

a

)

. (3)

Like in the wavelet transform, the factora is a scale or dilation
variable. By changinga, we can shift the central frequency of
ψ to receive a band of decomposed signals. Factorb is a time
shift or translation variable. For a given value ofa, factor b
shifts the functionψa,0(t) by an amountb along the time axis.

Note that1/
√

|a| is an energy normalizing factor. It ensures
that the energy stays the same for alla and b; therefore, we
have:

∫

∞

−∞

|ψa,b(t)|
2 dt =

∫

∞

−∞

|ψ(t)|2 dt. (4)

The cochlear filter, as the most important part of the transform,
is defined as:

ψa,b(t) =
1

√
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ψ
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)

=
1

√
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)α

exp

[

−2πfLβ

(
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)]

cos

[

2πfL

(

t− b

a

)

+ θ

]

u(t− b), (5)

where α > 0 and β > 0, u(t) is the unit step function;
i.e. u(t) = 1 for t ≥ 0 and 0 otherwise. Parametersα and
β determine the shape and width of the cochlear filter in
the frequency domain. They can be empirically optimized as
shown in our experiments in Section III. The value ofθ should
be selected such that (6) is satisfied:

∫

∞

−∞

ψ(t) dt = 0. (6)

This is required by the transform theory to ensure no infor-
mation is lost during the transform [2]. The value ofa can be
determined by the current filter central frequency,fc, and the
lowest central frequency,fL, in the cochlear filter bank:

a = fL/fc. (7)

Since we contractψa,b(t) with the lowest frequency along
the time axis, the value ofa is in the range0 < a ≤ 1. If
we stretchψ, the value ofa would be constrained toa > 1.
The frequency distribution of the cochlear filter can be in the
form of linear or nonlinear scales such as ERB (equivalent
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Fig. 2. Impulse responses of the BM in the auditory transform(AT) when
α = 3 andβ = 0.2, plotted by (5). The labels on the far left of each subplot
represent the central frequency of the plotted impulse response. They are very
similar to psychological measurements, such as the figures in [11], [12], [36]
(Fig. 1.12), [13], etc.
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Fig. 3. The frequency responses of the cochlear filters whenα = 3: (A)
β = 0.2; and (B)β = 0.035. The filter band width can be adjusted byβ for
different applications.

rectangular bandwidth) [26], Bark [35], Mel scale [7], or log.
For a particular band numberi, the corresponding value of
a is represented asai, which needs to be pre-calculated for
the required central frequency of the cochlear filters at band
numberi.

Fig. 2 shows the impulse responses for five cochlear filters
plotted using (5), which are similar to the psychoacoustic ex-
periment results, such as the impulse responses plotted in [11],
[13]. Fig. 3 shows the corresponding frequency responses.
Normally, we useα = 3. The value ofβ controls the filter band
width; i.e. the Q-factor. This makes our auditory transform
(AT) different than the Gammatone function [37] in which the
Q-factor is fixed.

We note that the inverse transform of the above trans-
form exists. It has been proven mathematically and validated
experimentally [2]. This property ensures that the forward
transform implemented by the cochlear filter bank can avoid
any information loss and thus qualifies as a platform for feature
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extraction.

B. Other Operations

The cochlear filter bank is intended to emulate the impulse
response in the cochlea. However, there are other operations
in the ear. The inner hair cells act as a transducer for
mechanical movements of the BM into neural activities. When
the BM moves up and down, a shearing motion is created
between the BM and the tectorial membrane [36]. It causes
the displacement of the uppermost hair cells which generates
the neural signals. However, the hair cells only generate the
neural signals in one direction of the BM movement. When the
BM moves in the opposite direction, there is neither excitation
nor neuron output. We studied different implementations of
the hair cell function. The following function of the hair cell
output provides the best performance in our evaluated task:

h(a, b) = T (a, b)2; ∀ T (a, b), (8)

where T (a, b) is the filter-bank output from (1). Here, we
assume that all other detailed functions in the outer ear, middle
ear, and the control of the neural system to the cochlea have
been ignored or have been included in the auditory filter
responses.

In the next step, the hair cell output for each band is
converted into a representation of nerve spike count density.
The duration of the count can be associated with the current
band central frequency. We use the following equation to
mimic the concept:

S(i, j) =
1

d

ℓ+d−1
∑

b=ℓ

h(i, b), ℓ = 1, L, 2L, · · · ; ∀ i, j, (9)

whered = max{3.5τi, 20ms} is the window length,τi is the
period of the central frequency of theith band, andL = 10 ms
is the window shift duration. We empirically set the system
parameters, but they may need to be adjusted for different
datasets. Instead of using a fixed length window as in the
FFT, we are using a variable length window for different
frequency bands. The higher the frequency, the shorter the
window. This prevents the high-frequency information from
being smoothed out by a long window duration. The output
of the above equation and the spectrogram of the cochlear filter
bank can be used for both feature extraction and analysis.

Furthermore, we apply the scales of loudness function
suggested by Stevens [38], [39] to the hair cell output as:

y(i, j) = S(i, j)1/3. (10)

In the last step, the discrete cosine transform (DCT) is applied
to decorrelate the feature dimensions and to generate the
cochlear filter cepstral coefficients (CFCCs), so the features
can work with the existing back-end.

C. Analysis and Comparison

We provide a comparative analysis of the auditory transform
(AT) and the well-known Fourier transform (FT), and then
extend the comparison to the features derived from the AT,
such as the CFCCs, and from the FT, such as the MFCCs.

Fig. 4. Comparison of FT and AT spectrums: (A) The FFT spectrogram of
a male voice “2 0 5”, warped into the Bark scale from 0 to 6.4 Barks (0 to
3500 KHz). (B) The spectrogram from the cochlear filter output for the same
male voice. The proposed AT is harmonic free and has less noise.

The analysis and discussion are intended to help the reader
understand the CFCCs. Further comparisons will be made in
the next section.

1) Comparison between AT and FT:The fast Fourier trans-
form (FFT) is the major tool for the time-frequency transform
used in speech signal processing. We use Fig. 4 to illustrate
the differences between the spectrograms generated from the
Fourier transform and our auditory transform [2]. The original
speech wave file is recorded from a male voice. We then
calculated the FFT spectrograms as shown in Fig. 4 (A), with
30 ms Hamming window shifting every 10 ms. To facilitate the
comparison, we then warped the frequency distribution from
linear scale to the Bark scale using the method in [6].

The spectrogram of our auditory transform is shown in Fig.
4 (B). It was generated from the output of the cochlear filter
bank as defined in (5) and uses a window of fixed duration
to compute the average densities for each band. In comparing
the two spectrograms in Fig. 4, we can observe that there
are no pitch harmonics and there is less computational noise
in the spectrums generated from the auditory transform. In
addition, all formant information has been kept. This is due
to the variable length of cochlear filters and the selection of
parameterβ in (5). The harmonics in FFT spectrogram are
due to the fixed window length for all frequency bands.

Furthermore, we compared the spectrums shown in Fig. 5.
A male voice was recorded in a moving car using two different
microphones. A close-talking microphone was placed on the
speaker’s lapel, and a hands-free microphone was placed on
the car visor. Fig. 5 is one of the spectrums from Fig. 4 at 1.15
second time frame. The solid line represents speech recorded
by the close-talking microphone, the dashed line corresponds
to speech recorded by the hands-free microphone. Fig. 5 (top)
is the spectrum from our auditory-based transform [2] and Fig.
5 (bottom) is from the Fourier transform. From Fig. 5, we can
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Fig. 5. Comparison of AT (top) and FFT (bottom) spectrums at the 1.15
second time frame for robustness: The solid line representsthe speech from a
close-talking microphone. The dashed line represents a hands-free microphone
mounted on the visor of a moving car. Both speech files were recorded
simultaneously. The FFT spectrum shows 30 dB distortion at low-frequency
bands due to background noise compared to the AT.

observe the following in the FFT spectrum, which are not as
significant in the AT spectrum:

• Distortion from background noise: The FFT spectrums
show a 30 dB distortion at low-frequency bands due to
the car background noise.

• Pitch harmonics: The FFT spectrums show significant
pitch harmonics, which is due to the fixed length of the
FFT window for all frequency bands. In AT computation,
the length of the impose response of the band-pass filters
is variable. It is shorter for high frequency and longer for
low frequency.

• Computation noise: The noise displayed as “snow” in Fig.
4 (A) was generated by the FFT computation.

For robust speaker identification, we do need a more ro-
bust time-frequency transform as the foundation for feature
extraction. The transform should generate less distortionfrom
background noise and less computation noise from selected
algorithms, such as pitch harmonics, while also retaining the
useful information. Here, the auditory transform providesa
robust solution to replace the Fourier transform.

2) Comparison between CFCCs and MFCCs:Since the
MFCC features are popular features in both speaker and
speech recognition, we compare the proposed CFCCs with
the MFCCs as follows:

It is understood that the MFCC features use the FFT to
convert the time domain speech signal to the frequency domain
spectrum. The power spectrum is calculated and then triangle
filters are applied to produce filter bank energy estimates. The
triangle filters are distributed in the Mel scale. In contrast,
the proposed CFCC features use a bank of cochlear filters
to decompose the speech signal into multiple bands. The
frequency response of a cochlear filter has a bell-like shape
rather than a triangle shape. The shape and width (the Q-
factor) of the filter in the frequency domain can be adjusted
by parametersα and β from (5). In each of the bands, the

decomposed signal is still in the time domain, represented by
real numbers. The central frequencies of the cochlear filters
can be arranged in any distribution, including Mel, ERB, Bark,
or log.

When using the FFT to compute a spectrogram, the window
size must be fixed to all frequency bands, due to the fixed point
FFT. When we compute a spectrogram from the decomposed
signals generated by the cochlear filters, the window size can
be different for different frequency bands. For example, weuse
a longer window for a lower frequency band to average out the
background noise and a shorter window for a higher frequency
band to protect high-frequency information. Furthermore,the
MFCCs use a logarithm as the nonlinearity while the CFCCs
use a cubic root.

3) Comparison between CFCCs and Gammatone-Based
Feature: The Gammatone frequency cepstral coefficients
(GFCC) are also auditory-based speech features [40]. We
introduce it briefly, so we can compare it in our experiments
later. The GFCC features use a Gammatone filter bank to
replace the Fourier analysis and includes down sampling, cubic
root, and DCT operations.

An exact implementation following the description in [40]
did not give us reasonable experimental results. To remedy
the outcome, we then replaced the “downsampling” procedure
in [40] by computing an average of the absolute values on
the Gammatone filter-bank output using a 20 ms window shift
every 10 ms, followed by a cubic root function and DCT.
This procedure gave us the best results in our experiments,
but because it is different from the original GFCCs, we have
named itmodified GFCC(MGFCC) features. Since this paper
presents the concept of using an auditory-based filter bank
as an alternative to the FFT, we consider MGFCCs to be an
additional result to support the concept, and as such we will
report our experimental results in subsequent sections.

We note that the Gammatone function in [41] is different
than the AT cochlear filter in (5). The Gammatone filter
bandwidth, (the Q-factor), is locked in to its central frequency
and cannot be adjusted, while the filter bandwidth in the
AT (5) can be influenced by parameterβ. As shown in our
experiments, the speaker identification performance can be
changed when adjusting the parameterβ. Also, unlike the
proposed AT, there is no proof of the existence of an inverse
transform of the Gammatone filter bank to ensure that there
is no information loss in the forward transform.

III. E XPERIMENTAL EVALUATION

This section presents the experimental evaluation of the
CFCC features for text-independent speaker identification
using a Gaussian mixture model (GMM) back-end. The
CFCC/GMM system was evaluated in a task where the acous-
tic conditions of training and testing are mismatched, i.e.
the training data set was recorded under a clean condition
while the testing data sets were mixed with different types of
background noise at various noise levels.

The experimental study has four tasks. We first establish
the baseline system which represents the current MFCC/GMM
system performance. Then a series of analytic studies on
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each component of the CFCCs is conducted to optimize the
CFCC feature extraction using a development dataset. Next,
the CFCC features are evaluated on the test dataset and
compared to the MFCC and MGFCC features. Furthermore,
we also compare the CFCC features with the PLP/RASPA-
PLP features on the same task.

A. Experimental Datasets

Our speaker recognition experiments started from the
NTIMIT database [42]. We used a subset of 38 speakers as
a development dataset and another subset of 460 speakers as
a testing dataset. There was no overlap between these two
datasets. Each speaker has eight utterances for training and two
utterances for testing. We developed the CFCC feature extrac-
tion algorithm and determined the feature parameters from the
development dataset. We then applied the developed CFCCs to
the testing dataset. We achieved 3.47% relative improvement
over the baseline MFCC features under matched conditions
on the testing dataset. However, the NTIMIT database cannot
show the performance on the mismatched conditions. We then
use the Speech Separation Challenge (SSC) database [43] to
report our research results because the database has several
mismatched conditions. Also, this allows us to compare our
results with other reported results on the same database.

For a fair comparison, we adjusted the MFCC parameters
on the development datasets for both databases to the best
performance. The adjusted parameters include the number of
cepstral coefficients and whether or not to use the cepstral
energy term and cepstral mean subtraction. While we adjusted
the CFCC parameters slightly, the feature extraction struc-
ture and the procedure of the feature extraction computation
remains the same from the NTIMIT to the SSC databases.
Actually, as readers can find in the following report, compared
to the difference caused by the feature extraction structure and
algorithm, the improvement from the parameter adjustment on
CFCCs, such asβ and window size, is very limited.

The Speech Separation Challenge database contains speech
recorded from a closed-set of 34 speakers (18 male and 16
female speakers). All speech files are single-channel data
sampled at 25 kHz and all material is end-pointed (i.e. there
is little or no initial or final silence) [43]. The training data
was recorded under clean conditions. The testing sets were
obtained by mixing clean testing utterances with white noise
at different SNR levels; in total there are five testing conditions
provided in the database (i.e. noisy speech at -12 dB, -6 dB, 0
dB, and 6 dB SNR, and clean speech). We find this database
ideal for the study of noise robustness when training and
testing conditions do not match. In particular, since all the
noisy testing data is generated from the same speech with only
the noise level changing, this largely reduces the performance
fluctuations due to variations other than noise types and mixing
levels.

In our experiments speaker models were first trained using
the clean training set and then tested on noisy speech at
four SNR levels. We created three disjoint subsets from the
database as the training set, development set, and testing set.
Each set has 34 speakers and there is no overlap of speakers

across the training, development, and testing sets. We notethat
since our feature parameters had been turned on the NTIMIT
database, the main purpose of the development dataset is to
show the effects of each of the adjustable parameters on the
overall system performance.

The training set has 20 utterances per speaker and 680
utterances in total. The average duration of training data per
speaker is 36.8 seconds of speech. The development set has
1700 utterances in total. There are five testing conditions (i.e.
noisy speech at -12 dB, -6 dB, 0 dB, and 6 dB SNR, and
clean speech). Each condition has 10 utterances per speaker.
The average duration of each utterance is 1.8 seconds. The
development set is only with white noise. The testing set has
the same five testing conditions. Each condition has 10 to 20
utterances per speaker. The duration of each testing utterance
is about 2 to 3 seconds of speech. The testing set has about
2500 utterances for each noise type. For three types of noises,
white, car, and babble, we have about 7500 utterances in total
for testing.

Note that the training set consists of only clean speech,
while both the development set and the testing set consist of
clean speech and noisy speech at five different SNR levels.
We mainly focused on 0 dB and 6 dB SNR conditions in our
feature analysis and comparisons because when conditions are
under -6 dB SNR the performance of all features is close to
random.

We note that in addition to white noise testing conditions
provided in the Speech Challenge database, we also generated
two more sets of testing conditions with car noise or babble
noise at -6 dB, 0 dB, and 6 dB SNR. The car noise and
babble noise were recorded under real-world conditions, and
mixed with the clean test speech from the Speech Separation
Challenge database. These test sets were used as additional
material to further test the robustness of the proposed auditory
features. The testing set sizes, with different types of noise,
are the same.

B. The Baseline System

Our baseline system uses the standard MFCC front-end
features and Gaussian Mixture Models (GMMs). Twenty-
dimensional MFCC features (c1∼ c20) were extracted from
the speech audio based on a 25 ms window with a frame-
rate of 10 ms; the frequency analysis range was set to be 50
Hz ∼ 8000 Hz. Note that the delta and double delta of the
MFCCs were not used here since they were not found to be
helpful in discerning between speakers in our experiments.We
also found cepstrum mean subtraction was not helpful for both
clean and mismatched data; therefore it was not used in our
baseline system.

The back-end of the baseline system is the standard GMMs
trained using the maximum likelihood estimation (MLE) [44].
Let Mi represent the GMM model for thei-th speaker, andi
be the index for speakers. During testing, the testing utterances
u match against all hypothesized speaker models (Mi), and the
speaker identification decision (J) is made by:

J = argmax
i

∑

k

log p(uk|Mi), (11)
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where uk is the k-th frame of utteranceu and p(·|Mi) is
the probability density function. Thirty-two Gaussian mixture
components were used in the speaker GMM models. To obtain
a fair comparison of the different front-end features, onlythe
front-end feature extraction was varied and the configuration
of the back-end of the system remained the same in all the
experiments throughout this paper.

C. Analytic Study Using a Development Set

To better understand and optimize the various components
of the CFCC feature extraction, we delved into each module in
the CFCC feature extraction and experimented with its alterna-
tive variations using a separate development set as described
in Section III-A. The goal was to determine the effects of
each component on the overall performance and ultimately
optimize the feature extraction. Specifically, we investigated
the effects of the filter width (β), various windowing schemes,
with/without equal loudness, and two different nonlinearity
schemes. The analytic study was performed on noisy speech
with white noise at 0 dB and 6 dB SNR levels.

1) Effect of Filter Bandwidth (β): The first step of the
cochlear feature calculation is to pass the speech audio through
a band-pass filter bank as described in (5), in whichβ is varied
to adjust the filter bandwidth. We experimented with different
β values and empirically optimized its value according to the
speaker identification accuracy performance.

Fig. 6 shows the speaker identification accuracy of the
CFCC features with different filter bandwidth (β). We found
that whenβ = 0.035, the CFCC has the best performance for
speaker identification.
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Fig. 6. Speaker identification accuracies of the auditory-based cochlear
features (CFCC) with different filter bandwidth adjusted byparameter (β).

2) Effect of Equal-Loudness:The loudness of a sound is
a function of both the intensity and the frequency spectrum
of a sound stimulus. For pure tone or narrow-band noise, the
equal-loudness contour measures the sound intensity across
frequency bands needed in order to invoke a sensation of
equal-loudness magnitude [45]. The equal-loudness level con-
tours are intended to reflect the frequency characteristicsof

the human auditory system. To simulate the human loudness
perception in our proposed auditory-based feature extraction,
we weighted each channel of the filter-bank output by an
equal-loudness function, which gives different weights to
different frequency bands [46].

Fig. 7 shows a comparison of CFCC systems with or without
using the equal-loudness function. It can be seen that the
system with equal-loudness weighting consistently performs
better than the one without equal-loudness weighting on all
testing conditions.
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Fig. 7. Speaker identification accuracy results of the auditory-based cochlear
features (CFCC) with/without equal loudness.

3) Effect of Various Windowing Schemes:As shown in
Fig. 1, after speech is decomposed into travelling waves, a
hair cell function with a certain window size is applied to
the traveling waves at each frequency band. We experimented
with three different types of windowing schemes. The first
one is the fixed-length window typically used in many feature
extraction approaches. The second one takes into account the
multi-resolution characteristics of the Cochlear transform and
uses a fixed-epoch window at different frequency bands. The
second scheme is more flexible; however, serious data leaking
problems can occur at high-frequency bands. For example
(assuming the sampling rate is 16 kHz and the target rate
of the feature extraction is 10 ms, or 160 samples), when
we use the window at the size of 3.5 epochs of the central
frequency at each frequency band, the window size at the
frequency band with a central frequency of 4 kHz would be
14 samples. That is much smaller than the target rate of 10
ms or 160 samples. To mitigate the data leaking problem, the
third approach combines the first two windowing schemes. In
low-frequency bands, a fixed-epoch window is used; as the
central frequency increases and data-leaking problems start to
occur, the fixed-length window is applied.

Fig. 8 shows a comparison of CFCC systems with three
different kinds of windowing schemes. It can be seen that
a combination of the fixed-length and fixed-epoch window
gives the best performance. The fixed-epoch window does not
perform as well, which might be due to the aforementioned
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data leaking problem.

0dB 6dB Clean
0.4

0.5

0.6

0.7

0.8

0.9

1

Test Conditions

A
cc

ur
ac

y

 

 

CFCC(3.5 Epochs or 20 ms)
CFCC(20 ms)
CFCC(3.5 Epochs)

Fig. 8. Speaker identification accuracy results of the auditory-based cochlear
features (CFCC) with a fixed-length window (20 ms), fixed-epoch window
(3.5 epochs), or a combination of the fixed-length and fixed-epoch window
(3.5 epochs or 20 ms).

4) Effect of nonlinearity:As shown in Fig. 1, after the
windowing/averaging procedure, a nonlinearity is appliedto
the simulate the nonlinearity in the human auditory system.We
experimented with both the logarithm and cubic-root nonlin-
earities and empirically found that the cubic-root nonlinearity
outperforms the logarithm under all noisy testing conditions
as shown in Fig. 9.

0dB 6dB Clean
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Test Conditions

A
cc

ur
ac

y

 

 

CFCC(Cubic Root)
CFCC(Logarithm)

Fig. 9. Speaker identification accuracy results of the auditory-based cochlear
features (CFCC) with logarithm and cubic nonlinearity.

It is interesting to observe that the cubic-root nonlinearity
performs better than the logarithm, which might have to do
with the warping and suppression effect of the cubic function
on the noise components. In comparison, the logarithm has a
high variance for changes at low energy.

5) Summary of Experimental Study with the Development
Dataset: Based on the previous analytic study, the CFCC fea-

ture extraction can be summarized as follows: First, the speech
audio file is passed through the band-pass filter bank. The filter
width parameterβ was set to 0.035. The Bark scale is used
for the filter bank distribution and equal-loudness weighting
is applied at different frequency bands. Second, the travelling
waves generated from the cochlear filters are windowed and
averaged by the hair cell function. The window length is 3.5
epochs of the band central frequency or 20 ms, whichever is
the shortest. Third, a cubic root is applied. Finally, sincemost
back-end systems adopt diagonal covariance based GMM or
HMM models, the discrete cosine transform (DCT) is used
to decorrelate the features. The 0th component, related to the
energy, is removed from the DCT output.

Table I shows a comparison of the speaker identification
accuracy of the optimized CFCC features with the MGFCCs
and MFCCs tested on the development set.

TABLE I

COMPARISON OFMFCC, MGFCC,AND PROPOSEDCFCCFEATURES

TESTED ON THE DEVELOPMENT SET.

Testing SNR -6 dB 0 dB 6 dB
MFCC 6.8% 15.9% 42.1%
MGFCC 9.1% 45.0% 88.8%
CFCC (Proposed) 12.6% 57.9% 90.3%

D. Final Experiments Using a Testing Dataset

Using the optimized CFCC feature extraction based on the
development set, we conducted speaker identification experi-
ments on the testing set with the results depicted in Fig. 10.As
we can see from Fig. 10, in clean testing conditions, the CFCC
features generated comparable results to MFCC features and
achieved over 96% accuracy. As white noise is added to the
clean testing data at increasing intensity, the performance of
the CFCCs is significantly better than both the MGFCCs
and MFCCs. For example, when the SNR of the testing
condition drops to 6dB, the accuracy of the MFCC system
drops to 41.2%. In comparison, the parallel system using the
proposed CFCC features still achieves 88.3% accuracy, more
than twice as accurate as the MFCC features. Similarly, the
MGFCC features have an accuracy of 85.1%, which is better
than the MFCC features, but not as good as the proposed
CFCC features. The CFCC performance in the testing data
set is similar to its performance in the development set.
Overall, we see that the proposed CFCC features significantly
outperform both the widely used MFCC features and another
related auditory-based MGFCC feature set in this speaker
identification task.

To further test the noise robustness of our proposed feature,
we conducted more experiments on noisy speech data with
two kinds of real-world noise (car noise and babble noise)
as described in Section III-A using the same experimental
setup. Fig. 11 and Fig. 12 present the experimental results
for the car noise and the babble noise at -6 dB, 0 dB and
6 dB levels, respectively. The proposed auditory features
consistently outperform the baseline MFCC system and the
MGFCC system under both real-world car noise and babble
noise testing conditions.
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Fig. 10. Comparison of MFCC, MGFCC, and the proposed CFCC features
tested on noisy speech with white noise.
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Fig. 11. Comparison of MFCC, MGFCC, and the proposed CFCC features
tested on noisy speech with car noise.

We conducted further experiments with PLP and RASTA-
PLP features using the same experimental setup as described
before [9][47]. The comparative results on white noise, car
noise, and babble noise are depicted in Fig. 13, Fig. 14,
and Fig. 15, respectively. The CFCC features outperform the
PLP features in all three testing conditions. The PLP features
minimize the differences between speakers while preserving
important speech information via the spectra warping tech-
nique [8], which, as a consequence, is typically not used
as speech features for speaker recognition. It is interesting
to observe that the CFCCs perform significantly better than
RASTA-PLP on white noise testing conditions at all different
levels; however, for car and babble noise the performance of
the CFCCs and RASTA-PLPs is fairly close. It is typically
used in combination with PLP, which is referred to as RASTA-
PLP [47]. Our experiments show that RASTA filtering largely
improves the performance of PLP features in speaker identi-
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Fig. 12. Comparison of MFCC, MGFCC, and the proposed CFCC features
tested on noisy speech with babble noise.

fication under mismatched training and testing conditions.It
is particularly helpful when tested under car noise and babble
noise, but it is not as effective for white noise. In comparison,
the CFCCs consistently generate superior performance in all
three conditions.
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Fig. 13. Comparison of PLP, RASTA-PLP, and the proposed CFCCfeatures
tested on noisy speech with white noise.

IV. CONCLUSIONS

A new auditory-based feature extraction algorithm for ro-
bust speaker identification in mismatched conditions was pre-
sented in this paper. Our research was motivated by studies
of the signal processing functions in the human peripheral
auditory system. The CFCC features are based on a recently
presented flexible time-frequency transform (AT) in combina-
tion with several components to emulate the human peripheral
hearing system. The analytic study for feature optimization
was conducted on a separate development set. The optimized
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Fig. 14. Comparison of PLP, RASTA-PLP, and the proposed CFCCfeatures
tested on noisy speech with car noise.
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Fig. 15. Comparison of PLP, RASTA-PLP, and the proposed CFCCfeatures
tested on noisy speech with babble noise.

CFCC features were then tested under a variety of mismatched
testing conditions, which included white noise, car noise,and
babble noise. Our experiments show that under mismatched
conditions, the new CFCCs perform consistently better than
both the MFCC and MGFCC features. Further comparison
with PLP and RASTA-PLP features shows that although
RASTA-PLP can generate comparable results when tested on
car noise or babble noise, it does not perform as well when
tested on flatly distributed white noise. In comparison, CFCCs
generate superior results under all three noise conditions.

The auditory transform is a new transform for robust fea-
ture extraction. In the future, we plan to extend our study
of auditory-based features to other speech application tasks,
including automatic speech recognition and accent recognition.
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