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Abstract— An auditory-based feature extraction algorithm is algorithm that is modeled on the basic signal processing
presented. We name the new features as cochlear filter cepatr functions in the ear. The proposed algorithm is also based on
coefficients (CFCC) which are defined based on a recently our recently developed auditory-based time-frequencystra

developed auditory transform (AT) plus a set of modules to .
emulate the signal processing functions in the cochlea. The form named Auditory Transform (AT) [1], [2]. The features

CFCC features are applied to a speaker identification task to generated from the proposed algorithm are named cochlear
address the acoustic mismatch problem between training and filter cepstral coefficients (CFCC).

testing environments. Usually, the performance of acoustimodels

trained in clean speech drops significantly when tested in nsy

speech. The CFCC features have shown strong robustness inA. Traditional Speech Feature Extraction and the Fourier
this kind of situation. In our experiments, the CFCC features  Apalysis

consistently perform better than the baseline MFCC featurs

under all three mismatched testing conditions — white noisecar At a high level, most speech feature extraction methods fall

noise, and babble noise. For example, in clean conditionsoth into the following two categories: modeling the human voice
MFCC and CFCC features perform similarly, over 96%, but production system or modeling the peripheral auditoryesyst

when the SNR of the input signal is 6 dB, the accuracy of the ) :
MFCC features drops to 41.2%, while the CFCC features still For the first approach, one of the most popular features is

achieve an accuracy of 88.3%. The proposed CFCC features als @ group of cepstral coefficients derived from linear predict
compare favorably to PLP and RASTA-PLP features. The CFCC known as the linear prediction cepstral coefficients (LPCC)
features consistently perform much better than PLP. Under vhhite  [3], [4]. The LPCC feature extraction utilizes an all-polkei
noise, tpﬁ CFCdC features darte) ziglniﬁca.”t'y bﬁtteélt:hc‘;‘g ?ASTA to model the human vocal tract with speech formants captured
E:;'?/'id\g S'iﬁml;? p'zrfg?r;a?]nces t% RKS[]&-SF?ILFE. € eatures by the poles of the all-pole filter. Thg narrow band_ (e.g., up
to 4 KHz) LPCC features work well in a clean environment.
Index Terms—Feature extraction algorithm, auditory-based However, in our previous experiments, the linear predictiv
fn(?tziig;{e:b;;;gng%tﬁigzléﬁ (r:%i?]?g:_'on’ robust speaker ecog- spe_ctral envelope show_s large spec?ral_ _distortion in noisy
environments [5], [6]. This results in significant performea
degradation.
|. INTRODUCTION For the second approach, there are two groups of features,
EATURE extraction is the first crucial component irbased on either Fourier transforms (FT) or auditory-based
automatic speech processing. Generally speaking, stiénsforms. Representative for the first group are the MFCCs
cessful front-end features should carry enough discritiviea (Mel frequency cepstral coefficients), where a fast Fourier
information for classification or recognition, fit well witthe transform (FFT) is applied to generate the spectrum in the
back-end modeling, and be robust with respect to the chandjggar scale, and then a bank of band-pass filters is placed
of acoustic environments. To the best of our knowledgalong a Mel frequency scale on top of the FFT output [7].
obtaining a satisfactory system performance under variofernatively, the FFT output is warped to a Mel or Bark scale
operating modes still remains problematic, especially wh&nd then a bank of band-pass filters is placed linearly onfop o
acoustic training and testing environments are mismatch&ae warped FFT output [5], [6]. The proposed algorithm irs thi
Since the human hearing system is robust to the mismatchper belongs to the second group, where the auditory-based
conditions, we propose an auditory-based feature extractiransformis defined as an invertible, time-frequency ticms.
The output from this kind of transform can be in any kind of
Copyright ©2010 IEEE. Personal use of this material is permitted. HOV"frequency scale (e.g., linear, Bark, ERB, etc). Thereftrese
ever, permission to use this material for any other purposest be obtained . . . .
from the IEEE by sending a request to pubs-permission@iage. is no need to place the band-pass filter in a Mel scale as in
This work was supported by the US AFRL under the contract rmmbthe MFCC or warp the frequency distributions as in [5], [6].
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Based on the FFT output, it uses several perceptually ndistribution to be similar to that of the Bark, Mel, or ERB
tivated transforms, including Bark frequency, equal-loess scale, which is similar to the frequency distribution fuant
preemphasis, and cubic-root amplitude compression [8& Tbf the Basilar membrane. Most importantly, the proposed
relative spectra, known as RASTA, is further developed toansform has significant advantages in noise robustnegs an
filter the time trajectory to suppress constant factors i tltan be free of the pitch harmonic distortion as plotted in [2]
spectral component [9]. It is often cascaded with the PL&hd Fig. 4. Therefore, the AT provides a new platform for
feature extraction to form the RASTA-PLP features. Compaiieature extraction research. It forms the foundation for ou
isons between MFCC and RASTA-PLP have been reportedrmbust feature extraction algorithm.
[10]. Further comparisons with the proposed CFCC featuresin summary, the ultimate goal of this study is to develop
in experiments will be given at the end of this paper. a practical, front-end speech feature extraction algarithat
Both MFCC and RASTA-PLP features are based on tl@nceptually emulates the human peripheral hearing system
Fourier transform (FT). As mentioned above, the FT hasamd uses the concept to achieve an improved noise robustness
fixed time-frequency resolution and a well-defined inverggerformance under mismatched training and testing camditi
transform. Fast algorithms exist for both the forward tfarms The remainder of this paper is organized as follows: Sec-
and the inverse transform. Despite its simplicity and edfiti tion Il demonstrates the proposed auditory feature extnact
computation algorithms, we believe that when applied wlgorithm and provides an analytic study and discussion;
speech processing the time-frequency decomposition mecBaction Il studies the feature parameters using a devedapm
nism of the FT is different than the mechanism in the hearinthataset and presents the experimental results of the mdpos
system. First, it uses fixed-length windows, which generafdCC in comparison to other front-end features in a testing
pitch harmonics over the entire speech bands. Secondly,dataset; finally, Section IV concludes the paper.
individual frequency bands are distributed linearly, whis
different from the distribution in the human cochlea. Ferth |l. PROPOSEDAUDITORY-BASED FEATURE EXTRACTION
wrapping is needed to convert to the Bark, MEL, or other ALGORITHM

scales. Finally, in our recent study in [1], [2], we observed Thjs section describes the structure of the proposed
that the FFT spectrogram has more noise distortion ag@ditory-based feature extraction algorithm and provides
computation noise than an auditory-based transform whieh s of its computation. Although we would like to emulate
recently developed. One of the examples is shown in Fig. the human peripheral hearing system, the computational as-
Thus, we find it necessary to develop a new feature extractig@ctS must meet the requirements of real-time applications
algorithm based on the new auditory-based, time-frequengrefore, we will simulate only the most important feature
transform [2] to replace the FT in speech feature extractioryf the human peripheral hearing system.

An illustrative block diagram of the proposed algorithm is
shown in Fig. 1. The proposed algorithm is intended to concep

) ) ) tually replicate the hearing system at a high level and st®si
The traveling wave of the basilar membrane (BM) in thgs e following modules: auditory transform implemented

cochlea and its impulse response have been observed gpd, cochlear filter bank, hair-cell function with windowing

reported in the literature, such as [11], [12], [13], [143].  cypic-root nonlinearity, and discrete cosine transfornrC
[16], [17]. Moreover, the BM tuning and auditory flltersA detailed description of each module follows.
have also been studied in the literature [18], [19], [201L][2

B. Auditory-Based Time-Frequency Analysis

[22], [23]. Many electronic and mathematic models have been '
defined to simulate the traveling wave, the auditory filtarsj Speech|  Auditory Hair Cell /
the frequency responses of the BM [24], [25], [26], [27],]128 Transform Windows

[29], [30], [31], [32], [33], [34].

Based on the study of the human hearing system, Li
proposed an auditory-based, time-frequency transform) (AT
in [1], [2]. The new transform is comprised of a pairing of <CFCC | DCT Non-Linearity
a forward transform and an inverse transform. Through the
forward transform, the speech signal can be decomposed into
a number of frequency bands using a bank of cochlear filteF&. 1. Schematic diagram of the proposed auditory-basetiirfe extraction
The frequency distribution of the cochlear filters is simiia algorithm named cochlear filter cepstral coefficients (CF.CC
the one in the cochlea and the impulse response of the filters
is similar to that of the travelling wave. Through the inwers
transform, the original speech signal can be reconstrdoted A The Auditory Transform
the decomposed band-pass signals. In [2], Li has presente@he auditory transform in Fig. 1 is the forward transform
the proof of the inverse transform of the AT and validated th&f a pair of invertible auditory-based transforms, as define
inverse AT in experiments. and described by Li in [2]. It can be implemented as a

Compared to the FFT, the AT has flexible time-frequendiiter bank. As the foundation of the auditory-based feature
resolution and its frequency distribution can take on arextraction algorithm, we use the forward auditory transfor
linear or nonlinear form. Therefore, it is easy to define th® replace the Fast Fourier transform used in many other
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features. The auditory transform models the traveling wave »

in the cochlea where the sound waveform is decomposed intog ©

a set of subband signals. o
Let f(t) be a speech signal. A transform fft) with respect 10 ‘ ‘ ‘ ‘ ‘ ‘

to a cochlear filtery)(t), representing the basilar membrane 0 ‘ ‘ {
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wherex denotes the convolution operatian,andb are real, o : {
both f () andy(t) belong toL*(R), andT'(a, b) representing 0 0002 0004 0006 0008 001 0012 0014 0.016
the traveling waves in the BM is the decomposed signal and x10°°
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T(aa b) = f(t) * wa,b(t) dtv (2) Time (Seconds)
where 1 f_b Fig. 2. Impulse responses of the BM in the auditory transf¢#f) when
P b(t) = —1 h (3) a =3 ands = 0.2, plotted by (5). The labels on the far left of each subplot
“ Val a represent the central frequency of the plotted impulseoresp They are very

o ] o similar to psychological measurements, such as the figargkli, [12], [36]
Like in the wavelet transform, the factaris a scale or dilation (Fig. 1.12), [13], etc.

variable. By changing, we can shift the central frequency of
1 to receive a band of decomposed signals. Falciera time _sol
shift or translation variable. For a given value @f factor b
shifts the function), (t) by an amounb along the time axis.
Note thatl A/]a| is an energy normalizing factor. It ensures
that the energy stays the same for @aland b; therefore, we

have- -120 I I 1 I I I I I
) /oo /oo 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

o di= [ )P dr @) o e 2

o -20

Magnitude (dB)

The cochlear filter, as the most important part of the tramsfo
is defined as:

Gas(t) ﬁw (?)

Magnitude (dB)
|
[o2]
(=]

1 t—b\*“ t—b 100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
= = exp 72’/TfLﬂ — (B) Frequency (Hz)
Vl0al a a
t—b Fig. 3. The frequency responses of the cochlear filters whea 3: (A)
cos {27r L <—> + 9] (t—10) (5) B =0.2;and (B)B = 0.035. The filter band width can be adjusted Byfor
different applications.

wherea > 0 and § > 0, u(t) is the unit step function;

i.e. u(t) = 1 for ¢t > 0 and 0 otherwise. Parameters and

3 determine the shape and width of the cochlear filter fi¢ctangular bandwidth) [26], Bark [35], Mel scale [7], oglo
the frequency domain. They can be empirically optimized &9" & particular band number the corresponding value of
shown in our experiments in Section III. The valugdashould @ is represented as;, which needs to be pre-calculated for

be selected such that (6) is satisfied: the required central frequency of the cochlear filters atdban
oo numbers;.
/ P(t) dt = 0. (6) Fig. 2 shows the impulse responses for five cochlear filters

plotted using (5), which are similar to the psychoacoustic e
This is required by the transform theory to ensure no infoperiment results, such as the impulse responses plottdd jn [
mation is lost during the transform [2]. The valuewtan be [13]. Fig. 3 shows the corresponding frequency responses.
determined by the current filter central frequengy,and the Normally, we usex = 3. The value of3 controls the filter band
lowest central frequency., in the cochlear filter bank: width; i.e. the Q-factor. This makes our auditory transform
0= fi/f. 7 (AT) diffe_ren_t than the Gammatone function [37] in which the
e Q-factor is fixed.
Since we contracty, »(t) with the lowest frequency along We note that the inverse transform of the above trans-
the time axis, the value ai is in the ranged < a < 1. If form exists. It has been proven mathematically and valiiate
we stretchy, the value ofa would be constrained ta > 1. experimentally [2]. This property ensures that the forward
The frequency distribution of the cochlear filter can be ia thtransform implemented by the cochlear filter bank can avoid
form of linear or nonlinear scales such as ERB (equivaleahy information loss and thus qualifies as a platform fonfesat
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extraction.

)

B. Other Operations

The cochlear filter bank is intended to emulate the impul:
response in the cochlea. However, there are other opesati
in the ear. The inner hair cells act as a transducer f
mechanical movements of the BM into neural activities. Whe , ™ : e —

. . . o] 0z 0.4 0.6 0.8 1 1.2 14 1.6
the BM moves up and down, a shearing motion is creat 4, Time (Se conds)
between the BM and the tectorial membrane [36]. It caus
the displacement of the uppermost hair cells which gengra |,
the neural signals. However, the hair cells only generate t .
neural signals in one direction of the BM movement. When tt
BM moves in the opposite direction, there is neither exicitat
nor neuron output. We studied different implementations
the hair cell function. The following function of the hairlce
output provides the best performance in our evaluated task

=)

ritical Band Rate (Bark)
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T
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h(a,b) = T(a,b)%; V T(a,b), (8) e <

where T(a, b) is the filter-bank output from (1). Here, weFig. 4. Comparison of FT and AT spectrums: (A) The FFT spectm of
that all other detailed f ti inth t atdiei a male voice “2 0 5", warped into the Bark scale from 0 to 6.4kB0 to

assume that all other detailed runctions in the outer € I' 3500 KHz). (B) The spectrogram from the cochlear filter otifipu the same
ear, and the control of the neural system to the cochlea havge voice. The proposed AT is harmonic free and has lesgnois
been ignored or have been included in the auditory filter
responses.

In the next step, the hair cell output for each band iBhe analysis and discussion are intended to help the reader
converted into a representation of nerve spike count densiinderstand the CFCCs. Further comparisons will be made in
The duration of the count can be associated with the currehé next section.

band central frequency. We use the following equation to 1) Comparison between AT and FThe fast Fourier trans-

mimic the concept: form (FFT) is the major tool for the time-frequency transfor
|t used in speech signal processing. We use Fig. 4 to illustrate
S(i,j) = = Z h(i,b), £=1,L,2L,---; Yi,j, (9) the differences between the spectrograms generated frem th
b=t Fourier transform and our auditory transform [2]. The ar@i

speech wave file is recorded from a male voice. We then
calculated the FFT spectrograms as shown in Fig. 4 (A), with
R0 ms Hamming window shifting every 10 ms. To facilitate the

parameters, but they may need to be adjusted for differ parison, we then warped thg frequency distfibution from
datasets. Instead of using a fixed length window as in t gear scale to the Bark scale _usmg the methpd n [6]'_ )
FFT, we are using a variable length window for different The spectrogram of our auditory transform is shown in I_:lg.
frequency bands. The higher the frequency, the shorter ﬁl]éB). It was. gengrated from the outpgt of the c_ochlear fllFer
window. This prevents the high-frequency information fromfank as defined in (5) and uses a window of fixed duration
being smoothed out by a long window duration. The outpEﬁ? compute the average deq5|t|es for each band. In comparing
of the above equation and the spectrogram of the cochlear filf1€ WO spectrograms in Fig. 4, we can observe that there
bank can be used for both feature extraction and analysis._are no pitch harmonics and there is less computational noise

Furthermore, we apply the scales of loudness functidp the spectrums generated from the auditory transform. In

suggested by Stevens [38], [39] to the hair cell output as: addition, all formant information has been kept. This is due
' to the variable length of cochlear filters and the selectibn o

y(i,j) = S(i, )3 (10) parameters in (5). The harmonics in FFT spectrogram are
due to the fixed window length for all frequency bands.
urthermore, we compared the spectrums shown in Fig. 5.
male voice was recorded in a moving car using two different
microphones. A close-talking microphone was placed on the
speaker’s lapel, and a hands-free microphone was placed on
) ) the car visor. Fig. 5 is one of the spectrums from Fig. 4 at 1.15
C. Analysis and Comparison second time frame. The solid line represents speech retorde
We provide a comparative analysis of the auditory transforhy the close-talking microphone, the dashed line corredpon
(AT) and the well-known Fourier transform (FT), and themo speech recorded by the hands-free microphone. Fig. % (top
extend the comparison to the features derived from the AS$,the spectrum from our auditory-based transform [2] amd Fi
such as the CFCCs, and from the FT, such as the MFCGs(bottom) is from the Fourier transform. From Fig. 5, we can

whered = max{3.57;,20ms} is the window lengthy; is the
period of the central frequency of tlith band, and. = 10 ms
is the window shift duration. We empirically set the syste

In the last step, the discrete cosine transform (DCT) isiagpl
to decorrelate the feature dimensions and to generate
cochlear filter cepstral coefficients (CFCCs), so the festu
can work with the existing back-end.
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decomposed signal is still in the time domain, represenyed b
a0/~ 1 real numbers. The central frequencies of the cochleardilter
can be arranged in any distribution, including Mel, ERB, IBar
or log.

When using the FFT to compute a spectrogram, the window
size must be fixed to all frequency bands, due to the fixed point
Critcal sand Rate (Barky 1“ 1 FFT. When we compute a spectrogram from the decomposed
signals generated by the cochlear filters, the window sire ca
be different for different frequency bands. For examplepae
a longer window for a lower frequency band to average out the
background noise and a shorter window for a higher frequency
band to protect high-frequency information. Furthermahe,
MFCCs use a logarithm as the nonlinearity while the CFCCs

‘ use a cubic root.

’ ) ® CrtcalBand Rate Bar) M * 3) Comparison between CFCCs and Gammatone-Based
Feature: The Gammatone frequency cepstral coefficients

Fig. 5. Comparison of AT (top) and FFT (bottom) spectumshat 1.15 () are also auditory-based speech features [40]. We

second time frame for robustness: The solid line repregbatspeech from a . . o .

close-talking microphone. The dashed line represents dsHiaee microphone introduce it briefly, so we can compare it in our experiments

mounted on the visor of a moving car. Both speech files wererded |ater. The GFCC features use a Gammatone filter bank to

Eg?]‘é';agﬁg‘g%amgrgﬂdSﬁ;gg“g;gg‘:‘; %0 31"33 Qistortioroatflequency - replace the Fourier analysis and includes down samplirtgiccu
root, and DCT operations.

An exact implementation following the description in [40]
observe the following in the FFT spectrum, which are not &id not give us reasonable experimental results. To remedy
significant in the AT spectrum: the outcome, we then replaced the “downsampling” procedure

in [40] by computing an average of the absolute values on

« Distortion from background noise: The FFT spectrun}%e Gammatone filter-bank output using a 20 ms window shift

show a 30 dB d|stort|o_n at low-frequency bands due té)very 10 ms, followed by a cubic root function and DCT.
the car background noise.

. o . ... This procedure gave us the best results in our experiments,
* P.'tCh harmomcs. The FFT spectrum; show &gmﬂca%t because it is different from the original GFCCs, we have
pitch harmonics, which is due to the fixed length of th

. Nfiamed itmodified GFCQMGFCC) features. Since this paper
FFT window for a_II frequency bands. In AT computatlo_n resents the concept of using an auditory-based filter bank
_the Ie_ngth of t_he IMPOSe response of the band-pass fit S an alternative to the FFT, we consider MGFCCs to be an
:S va}nable. Itis shorter for high frequency and longer foédditional result to support the concept, and as such we will
. ((:);vm::ﬁ;ggr%oise' The noise displayed as “snow” in Fiéeport our experimental results in subsequent sections.
4 (A) was generatéd by the FFT computation " We note that the Gammatone function in [41] is different
' than the AT cochlear filter in (5). The Gammatone filter
For robust speaker identification, we do need a more rgangwidth, (the Q-factor), is locked in to its central freqay
bust time-frequency transform as the foundation for featugng cannot be adjusted, while the filter bandwidth in the
extraction. The transform should generate less distoftimm AT (5) can be influenced by parametér As shown in our
background noise and less computation noise from seleciggheriments, the speaker identification performance can be
algorithms, such as pitch harmonics, while also retainire tchanged when adjusting the parameterAlso, unlike the
useful information. Here, the auditory transform provides proposed AT, there is no proof of the existence of an inverse

robust S°|Uti0_” to replace the Fourier transform. _ transform of the Gammatone filter bank to ensure that there
2) Comparison between CFCCs and MFCCSince the s no information loss in the forward transform.

MFCC features are popular features in both speaker and
speech recognition, we compare the proposed CFCCs with
the MFCCs as follows:

It is understood that the MFCC features use the FFT toThis section presents the experimental evaluation of the
convert the time domain speech signal to the frequency dom&FCC features for text-independent speaker identification
spectrum. The power spectrum is calculated and then teangking a Gaussian mixture model (GMM) back-end. The
filters are applied to produce filter bank energy estimatbs. TCFCC/GMM system was evaluated in a task where the acous-
triangle filters are distributed in the Mel scale. In contrastic conditions of training and testing are mismatched, i.e.
the proposed CFCC features use a bank of cochlear filtéhe training data set was recorded under a clean condition
to decompose the speech signal into multiple bands. Twhile the testing data sets were mixed with different typkes o
frequency response of a cochlear filter has a bell-like shapackground noise at various noise levels.
rather than a triangle shape. The shape and width (the QThe experimental study has four tasks. We first establish
factor) of the filter in the frequency domain can be adjustatie baseline system which represents the current MFCC/GMM
by parametersy and 5 from (5). In each of the bands, thesystem performance. Then a series of analytic studies on

100

20 I I I I

I1l. EXPERIMENTAL EVALUATION
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each component of the CFCCs is conducted to optimize theross the training, development, and testing sets. Wetinate
CFCC feature extraction using a development dataset. Nesifice our feature parameters had been turned on the NTIMIT
the CFCC features are evaluated on the test dataset dathbase, the main purpose of the development dataset is to
compared to the MFCC and MGFCC features. Furthermorhow the effects of each of the adjustable parameters on the
we also compare the CFCC features with the PLP/RASPAverall system performance.
PLP features on the same task. The training set has 20 utterances per speaker and 680
utterances in total. The average duration of training data p
speaker is 36.8 seconds of speech. The development set has
1700 utterances in total. There are five testing conditiams (

Our speaker recognition experiments started from thgisy speech at -12 dB, -6 dB, 0 dB, and 6 dB SNR, and
NTIMIT database [42]. We used a subset of 38 speakers @san speech). Each condition has 10 utterances per speaker
a development dataset and another subset of 460 speakershas average duration of each utterance is 1.8 seconds. The
a testing dataset. There was no overlap between these tw@elopment set is only with white noise. The testing set has
datasets. Each speaker has eight utterances for trainihigvan the same five testing conditions. Each condition has 10 to 20
utterances for testing. We developed the CFCC feature@xtratterances per speaker. The duration of each testing ntera
tion algorithm and determined the feature parameters fh@m tis about 2 to 3 seconds of speech. The testing set has about
development dataset. We then applied the developed CFCCg%00 utterances for each noise type. For three types ofs)oise
the testing dataset. We achieved 3.47% relative improvemeyhite, car, and babble, we have about 7500 utterances in tota
over the baseline MFCC features under matched conditiofa$ testing.
on the testing dataset. However, the NTIMIT database cannoNote that the training set consists of only clean speech,
show the performance on the mismatched conditions. We thghile both the development set and the testing set consist of
use the Speech Separation Challenge (SSC) database [43]léan speech and noisy speech at five different SNR levels.
report our research results because the database hasl sev@amainly focused on 0 dB and 6 dB SNR conditions in our
mismatched conditions. Also, this allows us to compare ofgature analysis and comparisons because when conditiens a
results with other reported results on the same database. under -6 dB SNR the performance of all features is close to

For a fair comparison, we adjusted the MFCC parametatsdom.
on the development datasets for both databases to the be$te note that in addition to white noise testing conditions
performance. The adjusted parameters include the numbepmdvided in the Speech Challenge database, we also getierate
cepstral coefficients and whether or not to use the cepstiab more sets of testing conditions with car noise or babble
energy term and cepstral mean subtraction. While we adjusitise at -6 dB, 0 dB, and 6 dB SNR. The car noise and
the CFCC parameters slightly, the feature extraction strugabble noise were recorded under real-world conditiond, an
ture and the procedure of the feature extraction compuatimixed with the clean test speech from the Speech Separation
remains the same from the NTIMIT to the SSC databaseShallenge database. These test sets were used as additional
Actually, as readers can find in the following report, conggiar material to further test the robustness of the proposedaydi
to the difference caused by the feature extraction stracdnd features. The testing set sizes, with different types ofeoi
algorithm, the improvement from the parameter adjustmant are the same.
CFCCs, such ag and window size, is very limited.

The Speech Separation Challenge database contains Sp%e.di‘he Baseline System

recorded from a closed-set of 34 speakers (18 male and 16

female speakers). All speech files are single-channel datU’ Paseline system uses the standard MFCC front-end

sampled at 25 kHz and all material is end-pointed (i.e. thefgdtures and Gaussian Mixture Models (GMMs). Twenty-

is little or no initial or final silence) [43]. The training ta dimensional MFCC features (ci c20) were extracted from

was recorded under clean conditions. The testing sets wi}§ SPeech audio based on a 25 ms window with a frame-
obtained by mixing clean testing utterances with white eoidat€ of 10 ms; the frequency analysis range was set to be 50
at different SNR levels; in total there are five testing ctiods 12 ~ 8000 Hz. Note that the delta and double delta of the
provided in the database (i.e. noisy speech at -12 dB, -6 dgM§CCS were not used here since they were not found to be
dB, and 6 dB SNR, and clean speech). We find this databzi%eépfm in discerning between speakers in our experiménis.

ideal for the study of noise robustness when training aC found cepstrum mean subtraction was not helpful fdm bot
testing conditions do not match. In particular, since a# trclean and mismatched data; therefore it was not used in our

noisy testing data is generated from the same speech wigh oAfSeline system. _ _
the noise level changing, this largely reduces the perfonea The back-end of the baseline system is the standard GMMs

fluctuations due to variations other than noise types anéhigix rainéd using the maximum likelihood estimation (MLE) [44]
levels. Let M; represent the GMM model for theth speaker, and

In our experiments speaker models were first trained usif§j (e index for speakers. During testing, the testing ariezs
the clean training set and then tested on noisy speechtdfaich againstall hypothesized speaker modet3 (and the
four SNR levels. We created three disjoint subsets from tfReaker identification decisiowYis made by:

database as the training set, development set, and testing s J = argmax » _log p(ux|M;), (11)
Each set has 34 speakers and there is no overlap of speakers ¢ =

A. Experimental Datasets
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where u;, is the k-th frame of utterance: and p(:|M;) is the human auditory system. To simulate the human loudness
the probability density function. Thirty-two Gaussian moise perception in our proposed auditory-based feature exbract
components were used in the speaker GMM models. To obtair weighted each channel of the filter-bank output by an
a fair comparison of the different front-end features, ahlg equal-loudness function, which gives different weights to
front-end feature extraction was varied and the configomatidifferent frequency bands [46].

of the back-end of the system remained the same in all theFig. 7 shows a comparison of CFCC systems with or without

experiments throughout this paper. using the equal-loudness function. It can be seen that the
system with equal-loudness weighting consistently pemfor
C. Analytic Study Using a Development Set better than the one without equal-loudness weighting on all

To better understand and optimize the various componeff§ting conditions.
of the CFCC feature extraction, we delved into each module in
the CFCC feature extraction and experimented with its radter ! = CFCC(With Equal Loudness)
tive variations using a separate development set as dedcri g5/~ = ~CFCC(Without Equal Loudness)
in Section 1llI-A. The goal was to determine the effects c
each component on the overall performance and ultimate 09
optimize the feature extraction. Specifically, we investégl
the effects of the filter width4), various windowing schemes,
with/without equal loudness, and two different nonlingari
schemes. The analytic study was performed on noisy spe«
with white noise at 0 dB and 6 dB SNR levels.

1) Effect of Filter Bandwidth £): The first step of the 07
cochlear feature calculation is to pass the speech audiaghr
a band-pass filter bank as described in (5), in wifich varied 0.65
to adjust the filter bandwidth. We experimented with différe

0.85

o
©

Accuracy

.. .. . . 0.6 8
£ values and empirically optimized its value according to th ,
speaker identification accuracy performance. 055 *
. . - . 0dB 6dB Clean
Fig. 6 shows the speaker identification accuracy of tf Test Conditions

CFCC features with different filter bandwidtls), We found

that whens = 0.035, the CFCC has the best performance fdrig. 7. Speaker identification accuracy results of the aughbased cochlear
speaker identification. features (CFCC) with/without equal loudness.

1 ‘ 3) Effect of Various Windowing Scheme&s shown in
%giggggngggggi ¢ Fig. 1, after speech is decomposed into travelling waves, a
0950 . CRCC(botaz,040) | hair cell function with a certain window size is applied to

0.9 1 the traveling waves at each frequency band. We experimented

with three different types of windowing schemes. The first
one is the fixed-length window typically used in many feature
. extraction approaches. The second one takes into accaint th
multi-resolution characteristics of the Cochlear transf@and
uses a fixed-epoch window at different frequency bands. The

0.85

o
©

Accuracy
o
~
o

0.7 1 second scheme is more flexible; however, serious data lgakin
0.65 | problems can occur at high-frequency bands. For example
(assuming the sampling rate is 16 kHz and the target rate

oL | of the feature extraction is 10 ms, or 160 samples), when
055l | we use the window at the size of 3.5 epochs of the central
frequency at each frequency band, the window size at the
8B 6dB clean frequency band with a central frequency of 4 kHz would be
Test Conditions 14 samples. That is much smaller than the target rate of 10

Fig. 6. Speaker identification accuracies of the auditayell cochlear m; or 160 samples. TO mltlgaFe the dat,a Ieak]ng problem, the

features (CFCC) with different filter bandwidth adjustedparameter §).  third approach combines the first two windowing schemes. In
low-frequency bands, a fixed-epoch window is used; as the

2) Effect of Equal-LoudnessThe loudness of a sound iscentral frequency increases and data-leaking problemiststa

a function of both the intensity and the frequency spectruatcur, the fixed-length window is applied.

of a sound stimulus. For pure tone or narrow-band noise, theFig. 8 shows a comparison of CFCC systems with three

equal-loudness contour measures the sound intensity sacrifferent kinds of windowing schemes. It can be seen that

frequency bands needed in order to invoke a sensationaftombination of the fixed-length and fixed-epoch window

equal-loudness magnitude [45]. The equal-loudness lexel c gives the best performance. The fixed-epoch window does not

tours are intended to reflect the frequency characterisfics perform as well, which might be due to the aforementioned
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data leaking problem.

1

—&— CFCC(3.5 Epochs or 20 ms) o
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Fig. 8. Speaker identification accuracy results of the anglibased cochlear
features (CFCC) with a fixed-length window (20 ms), fixed-&pavindow

(3.5 epochs), or a combination of the fixed-length and fixeoel window

(3.5 epochs or 20 ms).

4) Effect of nonlinearity: As shown in Fig. 1, after the
windowing/averaging procedure, a nonlinearity is applied
the simulate the nonlinearity in the human auditory sys\@m.
experimented with both the logarithm and cubic-root nonli
earities and empirically found that the cubic-root nordiriey
outperforms the logarithm under all noisy testing conditio
as shown in Fig. 9.

1

—&— CFCC(Cubic Root) {
0.9/~ 4 - CFCC(Logarithm) /B ) |
0.8F = i

Accuracy
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\
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0.1 !
0dB 6dB Clean
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Fig. 9. Speaker identification accuracy results of the augbased cochlear
features (CFCC) with logarithm and cubic nonlinearity.

It is interesting to observe that the cubic-root nonlintyar

ture extraction can be summarized as follows: First, thecpe
audio file is passed through the band-pass filter bank. Tlee filt
width parameters was set to 0.035. The Bark scale is used
for the filter bank distribution and equal-loudness weiggti
is applied at different frequency bands. Second, the tiagel
waves generated from the cochlear filters are windowed and
averaged by the hair cell function. The window length is 3.5
epochs of the band central frequency or 20 ms, whichever is
the shortest. Third, a cubic root is applied. Finally, sinoast
back-end systems adopt diagonal covariance based GMM or
HMM models, the discrete cosine transform (DCT) is used
to decorrelate the features. The Oth component, relateleto t
energy, is removed from the DCT output.

Table | shows a comparison of the speaker identification
accuracy of the optimized CFCC features with the MGFCCs
and MFCCs tested on the development set.

TABLE |
COMPARISON OFMFCC, MGFCC AND PROPOSEDCFCCFEATURES
TESTED ON THE DEVELOPMENT SET

Testing SNR -6 dB 0dB 6 dB
MFCC 6.8% | 15.9% | 42.1%
MGFCC 9.1% | 45.0% | 88.8%
CFCC (Proposed) 12.6% | 57.9% | 90.3%

nD. Final Experiments Using a Testing Dataset

Using the optimized CFCC feature extraction based on the
development set, we conducted speaker identification exper
ments on the testing set with the results depicted in FigA%0.
we can see from Fig. 10, in clean testing conditions, the CFCC
features generated comparable results to MFCC features and
achieved over 96% accuracy. As white noise is added to the
clean testing data at increasing intensity, the performarfc
the CFCCs is significantly better than both the MGFCCs
and MFCCs. For example, when the SNR of the testing
condition drops to 6dB, the accuracy of the MFCC system
drops to 41.2%. In comparison, the parallel system using the
proposed CFCC features still achieves 88.3% accuracy, more
than twice as accurate as the MFCC features. Similarly, the
MGFCC features have an accuracy of 85.1%, which is better
than the MFCC features, but not as good as the proposed
CFCC features. The CFCC performance in the testing data
set is similar to its performance in the development set.
Overall, we see that the proposed CFCC features significantl
outperform both the widely used MFCC features and another
related auditory-based MGFCC feature set in this speaker
identification task.

To further test the noise robustness of our proposed feature
we conducted more experiments on noisy speech data with
two kinds of real-world noise (car noise and babble noise)
ias described in Section IlI-A using the same experimental

performs better than the logarithm, which might have to dgetup. Fig. 11 and Fig. 12 present the experimental results
with the warping and suppression effect of the cubic fumctidor the car noise and the babble noise at -6 dB, 0 dB and
on the noise components. In comparison, the logarithm haé adB levels, respectively. The proposed auditory features

high variance for changes at low energy.

consistently outperform the baseline MFCC system and the

5) Summary of Experimental Study with the DevelopmadGFCC system under both real-world car noise and babble
Dataset: Based on the previous analytic study, the CFCC feaeise testing conditions.
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Fig. 10. Comparison of MFCC, MGFCC, and the proposed CFC@fea Fig. 12.
tested on noisy speech with babble noise.

tested on noisy speech with white noise.

1 T T =
o f\?AFGCFCC(g(aCr NﬂSé) ) P T fication under mismatched training and testing conditidns.
-< - ar Noise P o . . .
0.0l =~ MFCC(Car Noise) et | is partlcula_rly helpful when_tested un_der car noise and tee_nbb
' e noise, but it is not as effective for white noise. In compamis
- - the CFCCs consistently generate superior performancd in al
0.8F 1 three conditions.
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Fig. 11. Comparison of MFCC, MGFCC, and the proposed CFC@fes S
tested on noisy speech with car noise. 0.2 : A
£
0.1+ b
We conducted further experiments with PLP and RASTA ot .

PLP features using the same experimental setup as descri
before [9][47]. The comparative results on white noise, car

1 ; ; —
—&— CFCC(Babble Noise) A
0.9} — < ~MGFCC(Babble Noise) i
—x—-MFCC(Babble Noise) & s
0.8F s T 4
P
— _ %
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0.6 e AT ]
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0.57" . i
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7/
0.41 e N
7/
0.31 P 4
0.2 4
7/
0.14r i
0 L |
-6dB 0dB 6dB
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Clean

Comparison of MFCC, MGFCC, and the proposed CFC@ifesa

Test Conditions

Il
6dB

Clean

noise, and babble noise are depicted in Fig. 13, Fig. 149 13. Comparison ﬁf Ff'-hp' E_ASTA_'P'-P' and the proposed Ck@ires
and Fig. 15, respectively. The CFCC features outperform tff&'e? On noisy speech with white noise.

PLP features in all three testing conditions. The PLP festur
minimize the differences between speakers while presgrvin
important speech information via the spectra warping tech-

nique [8], which, as a consequence, is typically not usedA new auditory-based feature extraction algorithm for ro-
as speech features for speaker recognition. It is integestbust speaker identification in mismatched conditions was pr
to observe that the CFCCs perform significantly better thaented in this paper. Our research was motivated by studies
RASTA-PLP on white noise testing conditions at all differenof the signal processing functions in the human peripheral
levels; however, for car and babble noise the performanceafditory system. The CFCC features are based on a recently

IV. CONCLUSIONS

the CFCCs and RASTA-PLPs is fairly close. It is typicallypresented flexible time-frequency transform (AT) in conabin

used in combination with PLP, which is referred to as RASTAton with several components to emulate the human periphera
PLP [47]. Our experiments show that RASTA filtering largelyrearing system. The analytic study for feature optimizatio
improves the performance of PLP features in speaker identias conducted on a separate development set. The optimized
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