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ABSTRACT

Discriminative Training (DT) methods for acoustic modeling, such
as MMI, MCE, and SVM, have been proved effective in speaker
recognition. In this paper we propose a DT method for GMM us-
ing soft frame margin estimation. Unlike other DT methods such
as MMI or MCE, the soft frame margin estimation attempts to en-
hance the generalization capability of GMM to unseen data in case
the mismatch exists between training data and unseen data. We de-
fine an objective function which integrates multi-class separation
frame margin and loss function, both as functions of GMM like-
lihoods. We propose to optimize the objective function based on
a convex optimization technique, semidefinite programming. As
shown in our experimental results, the proposed soft frame margin
discriminative training with semidefinite programming optimiza-
tion (SFME-SDP) is very effective for robust speaker model train-
ing when only limited amounts of training data are available.

Index Terms— robust speaker recognition, soft margin dis-
criminative training, gaussian mixture model

1. INTRODUCTION

Gaussian Mixture Model (GMM) has been widely used as the
probabilistic model in most automatic speaker recognition systems
[1], and the parameters can be estimated by the EM algorithm un-
der the ML objective. Discriminative training (DT) of GMM has
been proved an effective way to improve the performance from
ML training, e.g. maximum mutual information (MMI) [2], and
minimum classification error (MCE) [3]. An issue with traditional
DT approaches is the limited capability of performance gain carry-
over from training data to unseen test data. The power to deal
with possible mismatches between the training and testing condi-
tions can often be measured by the generalization ability of the
machine learning algorithms [4]. To address this, the concept of
a large margin classifier has been developed. The support vector
machines (SVMs) [4] developed under the concept has demon-
strated the generalization ability and has been applied successfully
in speaker recognition [5, 6].

Inspired by SVM, recently many attempts have been made
to incorporate the principle of large margin into hidden Markov
model (HMM) training in automatic speech and language recogni-
tion. For speech recognition, a large margin estimation method is
proposed to maximize the minimum margin between HMMs [7].
A soft margin estimation of HMMs is proposed to minimize the
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empirical loss and maximize the separation margin together [8].
Some other attempts, such as LMMCE and Boosted MMI [9, 10],
embedded the discriminative margin concept into traditional DT
methods. A soft margin estimation is proposed to maximize the
minimum margin between GMMs for spoken language recogni-
tion [11]. However, to our knowledge, few such attempts have
been made in speaker recognition. All of the above have motivated
our idea of soft frame margin discriminative training of GMM for
speaker recognition.

Convex optimization has been applied successfully to HMM
parameter estimation for DT methods. In [12], semidefinite pro-
gramming (SDP) is used to estimate HMM parameters of a for-
mulated large margin estimation method. In [13], second order
cone programming (SOCP) is applied successfully for parameter
optimization of formulated large margin estimation method. A
convex optimization method is used to jointly optimize the mean
and variance of large margin HMMs [14]. All these works have
proved that convex optimization is more effective than traditional
Extended Baum Welch (EBW) and Generalized Probabilistic De-
scent (GPD) methods.

In this paper we propose a soft frame margin estimation of
GMM with SDP optimization (SFME-SDP) for speaker recogni-
tion. The objective function of SFME-SDP integrates the max-
imization of the frame margins over correct data near decision
boundary and minimization of a loss function over error data. We
propose to optimize the objective function with the SDP convex
optimization method. Also in this paper, we focus on evaluat-
ing the proposed SFME-SDP method under the data sparseness
condition. We conducted experiments on NTIMIT to evaluate the
proposed SFME-SDP approach. The paper is organized as fol-
lows. Section 2 describes the concept of SFME of GMM. Sec-
tion 3 presents the GMM parameter estimation with SDP convex
optimization. Section 4 presents experimental setup and results.
Finally, conclusions are drawn in section 5.

2. SOFT FRAME MARGIN GMM

Suppose there areK target speakers to be recognized. The training
data set consists of a collection of speech segmentsD = {Xk

n;n =
1, 2, · · · , N, k = 1, 2, · · · ,K}, where each speech segment is
a sequence of feature vectorXk

n = {xk
nt; t = 1, 2, · · · , Tn}.

The GMMs for allK speakers are denoted asΛ = {λk, k =
1, 2, · · · ,K}. The frame level multi-class separation margin of
speech segmentXk

n from speakerk is defined as,



d(Xk
n) =

1

Tn

[

P(Xk
n|λk)− max

j∈Ω j 6=k
P(Xk

n|λj)

]

= min
j∈Ω j 6=k

1

Tn

[

P(Xk
n|λk)− P(Xk

n|λj)
]

(1)

whereΩ denotes a set of all speakers, andP(Xk
n|λj) denotes the

log-domain likelihood scores of speech segmentXn given speaker
modelλj . From the definition, ifd(Xk

n) ≤ 0, Xk
n is incorrectly

recognized by the GMM setΛ; if d(Xk
n) > 0, Xk

n is correctly
recognized by the GMM setΛ. A subsetS of D is defined as,

S = {Xk
n | Xk

n ∈ D and0 ≤ d(Xk
n) ≤ ε} (2)

whereε > 0 is a pre-set positive number.S is calledsupport
token set and each speech segmentXk

n in S is called a support
token. Each support token has small positive margin, thus is cor-
rectly identified and near the classification boundary. Furthermore,
another subsetE of D is defined as:

E = {Xk
n | Xk

n ∈ D andd(Xk
n) < 0} (3)

whereE is callederror token set and each speech segment inE is
called a error token. Each error token has negative margin, thus
is misclassified. To achieve better generalization power, it is de-
sirable to adjust decision boundaries to make all support tokens as
far from the decision boundaries as possible. While maximizing
the separation margin, it is desirable to minimize the total error
caused by the error token setE . Suppose we define the error func-
tion ξ(Xk

n) for a speech segmentXk
n in E as follows:

ξ(Xk
n) =

1

|E|

∑

j∈Ω

[

P(Xk
n|λj)− P(Xk

n|λk)
]

(4)

This leads to estimate the GMM models based on the objec-
tive of integrating minimum separation frame margin maximiza-
tion and the average error minimization, which is named asSoft
Frame Margin Estimation (SFME):

Λ̃ = argmin
Λ



 − min
Xk

n
∈S

d(Xk
n) +

η

|E|

∑

Xk
n
∈E

ξ(Xk
n)



 (5)

whereη > 0 is a pre-set positive constant to balance contribution
from the minimum margin and the average error.

A margin termρ is introduced as a common lower bound to
represent themin part of all margin terms in 5. Also it is beneficial
to impose a locality constraint on model parametersΛ to ensure
that parameters do not deviate too much from their initial or cur-
rent values. The locality constraint can be quantitatively computed
based on relaxed Kullback-Leibler divergence (KLD). As a result,
The constrained SFME problem is formulated as a minimization
problem,

Λ̃ = argmin
Λ,ρ

[

−ρ+
η

|E||Ω|
·

∑

Xk
n
∈E,j∈Ω

(

P(Xk
n|λj)− P(Xk

n|λk)
)





(6)

subject to:

P(Xk
n|λj)− P(Xk

n|λk) ≤ −ρ · Tn (7)

∀Xk
n ∈ S andj ∈ Ω andj 6= k

‖Λ− Λ(0)‖2 ≤ θ
2 (8)

ρ ≥ 0 (9)

3. PARAMETER ESTIMATION WITH CONVEX
OPTIMIZATION

Among all the optimization methods for discriminative training,
convex optimization has been proved to be effective. It has been
shown that SDP, although has very high computational complexity,
is the most successfully convex optimization method for tasks with
small model size [12]. In this work we adopt SDP to solve the
constrained SFME problem formulated in section 2. The standard
SDP problem is illustrated as,

Minimize
p

∑

j=1

Cj ·Xj (10)

subject to
p

∑

j=1

Bij ·Xj ≤ bi, i = 1, · · · ,m (11)

Xj � 0 (12)

whereXj � 0means each variableXj is a positive semidefinite
matrix.Aij , Cj are real symmetric matrices with the same dimen-
sion asXj , bi is a scalar constant, andX · Y denotes the inner
product of two symmetric matrices.

In our work, we only consider optimizing the mean parame-
ters of GMM and leave other parameters unchanged. The formu-
lation can be extend to deal with other GMM parameters as well.
Suppose there are totallyL Gaussian in the model setΛ, the nor-
malized mean vector̃µl for all l ∈ {1, · · · ,L} is defined as:

µ̃l =
(µl1

σl1
;
µl2

σl2
; . . . ;

µlD

σlD

)

. (13)

Then, we construct a matrixU by concatenating all normal-
ized Gaussian mean vectors as columns:

U = (µ̃1, µ̃2, . . . , µ̃L). (14)

when using the top Gaussian path to approximate the sum of
all paths, the approximated GMM likelihood is formulated as,

P(Xk
n|λj) = cj −

1
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2

σ2
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t
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1

2
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t

)
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1

2

Tn
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nt; ej∗

t
)′(ID, U)′(ID, U)(x̃k

nt; ej∗
t
)

= −Aj · Z + cj (15)

wherep = {(j∗t )
Tn

1 , j∗t ∈ {1, · · · ,L}} denotes the viterbi Gaus-
sian path for featureXk

n and GMM modelλj . ei is a vector



with −1 at the i-th position, and zero everywhere else.ID is
D-dimensional identity matrix.x̃k

nt denotes normalized feature
vector,

x̃
k
nt :=

(xk
nt1

σj∗
t
1
;
xk
nt2

σj∗
t
2
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xk
ntD

σj∗
t
D

)

(16)

Aj =
1

2

T
∑

t=1

(x̃k
nt; ej∗

t
)(x̃k

nt; ej∗
t
)′ (17)

Z =

(

ID U
U ′ Y

)

Y = U
′
U. (18)

Similarly the average error in (6), the margin constraint in (7),
and the locality constraint in (8) are formulated as,

P(Xk
n|λj)− P(Xk

n|λk) = Akj · Z − ckj ≤ −ρ · Tn (19)

η

|E||Ω|
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Xk
n
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= E · Z (20)
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= Q · Z (21)

whereAkj = Ak − Aj , E = η

|E||Ω|

∑

Xk
n
∈E j∈E Akj , andQ =

∑L
l=1(µ̃

(0)
l ; el)(µ̃

(0)
l ; el)

′. To formulate the constrained SFME
problem into an SDP problem, all the constraints have to be con-
vex. Then the relaxation is made for the constraint in (18),

Y = U
′
U

relaxation
→ Y − U

′
U � 0 (22)

with which the non-convex constraint in (18) is relaxed to the con-

vex constraintZ =

(

ID U
U ′ Y

)

� 0. Finally the constraint

SFME problem is formulated as an SDP problem and named as
SFME-SDP,

Λ̃ = argmin
Λ, ρ

−ρ + E · Z (23)

subject to
Akj · Z + Tn · ρ ≤ ckj (24)

∀Xk
n ∈ S andj ∈ Ω andj 6= k

Q · Z ≤ LDr
2 (25)

Z � 0, Z1:D,1:D = ID, ρ ≥ 0 (26)

where locality constraint upper boundθ2 in (8) is replaced by
LDr2 since the scaledr is much easier to tune in experiments.

4. EXPERIMENTS

The NTIMIT corpus is used to evaluate the effectiveness of the
proposed SFME-SDP approach for robust speaker model training
with sparse training data. A 168 speaker (112 males, 56 females)
identification task from NTIMIT, referred to as NTIMIT168, is
configured as the test set. In order to conduct parameter tuning
and system optimization, a separate development set consisting of
38 speakers is used as our development set, which is referred to
as NTIMIT38. For each speaker in both the NTIMIT168 and the

NTIMIT38 tasks, 8 utterances are used for training, and 2 utter-
ances are used for evaluation. The average duration of each test
segment is about 3 seconds.

An SDP optimization problem is formulated based on the pro-
posed SFME-SDP approach, open source convex optimization soft-
ware DSDP [15] is used for the optimization of the formulated
problem. All the system trainings are performed on the NTIMIT38
development set. The system parameters are tuned towards achiev-
ing the best performance on NTIMIT38 evaluation data. Then the
tuned parameter settings are directly carried over to the NTIMIT168
test set to set up the system using NTIMIT168 training data, the
performance of which on NTIMIT168 evaluation data is referred
to as test performance. First, MFCC features are generated as the
front-end for all systems. Then the GMM-UBM baseline system
described in [1] is trained. The GMM-UBM baseline ID accu-
racy on NTIMIT38 development set is 80.26%. With the GMM-
UBM baseline being used as the seed model, GMM speaker mod-
els based on the proposed SFME-SDP are trained and named as
GMM-SFME-SDP. To compare the proposed SFME-SDP with other
similar approaches, MMI and SVM are also evaluated. Similar to
the GMM-SFME-SDP system, the GMM-MMI system is trained
with the use of the GMM-UBM baseline as the seed model. For
SVM training as described in [16], SVMTorch is used to train the
SVM classifier. Gaussian kernel is used for the SVM classifier.
We fine-tuned the GMM-MMI and SVM systems to achieve the
best performance.

In this experiment, we slightly modify the selection of support
token set defined in (2). The support token set is selected by in-
cluding the topN correctly identified data closest to the decision
boundary instead of the use ofε. Also, we realize that instead of
imposing constraints in (24) for all other competing speakers to
the SFME-SDP problem, it is sufficient to include those for the
top M most confusable speaker candidates. Then we fine-tuned
the three critical parameters:N , M , andr. Table 1 illustrates the
effect ofM on the GMM-SFME-SDP system ID accuracy, based
on whichM over 10 does not give any further gain. Table 2 shows
the system performance for variousN settings. Finally locality
constraint thresholdr is tuned based on the optimal topN and
topM values, which is shown in Table 3. System comparison is
illustrated in Figure 1. Given limited data, all systems improve
the development data performance over the GMM-UBM baseline,
while GMM-MMI performance drops quickly. Among all the sys-
tems GMM-SFME-SDP significantly outperforms the other two.
The optimal parameter settings tuned with NTIMIT38 are carried

Table 1. GMM-SFME-SDP system performance with various top
M settings for NTIMIT38 development set

M = 5 M = 10 M = 15
Accuracy 82.90% 84.21% 84.21%

Table 2. GMM-SFME-SDP system performance with various top
N settings for NTIMIT38 development set

N = 20 N = 30 N = 40
Accuracy 81.58% 84.21% 82.90%

Table 3. The effect of locality constraint thresholdr on GMM-
SFME-SDP system ID accuracy for NTIMIT38 development set

r = 0.02 r = 0.04 r = 0.06
Accuracy 84.21% 86.84% 84.21%
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Fig. 1. Comparison of GMM-MMI, SVM, and GMM-SFME-
SDP: SVM is not iterative approach, only one iteration SVM train-
ing is performed

over to the NTIMIT168 test set for the setup of all systems. The
GMM-UBM baseline ID accuracy for the NTIMIT168 test set is
66.7%. The NTIMIT168 test data identification accuracy for var-
ious systems are listed in Table 4. When generilized to test set,
MMI only maintains marginal improvement over baseline, mainly
due to the sparseness of available training data. GMM-SFME-
SDP, on the other hand, still generalize pretty well to test set, a
10% relative improvement over GMM-MMI. SVM performance
on test set is not as good as expected, very likely due to the use of
the one-versus-other approach instead of the pairwise one-versus-
one approach.

Table 4. System comparison of GMM baseline (GMM-EM),
GMM-MMI, SVM, and GMM-SFME-SDP on NTIMIT168 test
set

Accuracy
GMM-EM GMM-MMI SVM GMM-SFME-SDP

66.7% 66.9% 64.8% 70.2%

5. CONCLUSIONS

In this paper we proposed the SFME method for speaker recogni-
tion. We introduced the SDP convex optimization for the formu-
lated SFME problem. The proposed SFME-SDP methods greatly
outperform other discriminative training methods such as MMI
under data sparseness condition. We realized more experiments
with SVM system is needed before we compare the SFME-SDP
and SVM. Following this work we will set up SVM identification
system based on the pairwise one-versus-one method, and even
the hybrid GMM/SVM system. Also we will evaluate the pro-
posed SFME-SDP method under sufficient training data condition.
Other future works include refining the proposed SFME method
with frame and utterance selection, and investigating other convex
optimization techniques.
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