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ABSTRACT

Traditionally, speaker authentication has focused on two cat-
egories of techniques: speaker verification and speaker iden-
tification. In this paper, we introduce a third category called
verbal information verification (VIV) in which a claimed
speaker’s utterances are verified against the key informa-
tion in the speaker’s registered profile to decide whether
the claimed identity should be accepted or rejected. The
proposed VIV technique can be used independently or com-
bined with the traditional speaker verification techniques to
achieve flexible and improved speaker authentication. In-
stead of accomplishing VIV through recognizing the key
information, the proposed VIV algorithm is based on the
concept of sequential utterance verification. In a telephone
speaker authentication experiment on 100 speakers and us-
ing three pass-utterances in response to three categories of
questions, the proposed VIV system achieved 0.00% equal-
error rate, compared to 30% false rejection rate on an auto-
matic speech recognition approach.

1. INTRODUCTION

Verbal information verification (VIV) is to verify spoken in-
formation against the key information in a given user’s pro-
file, such as mother’s maiden name, birth place, residence
address and so on. Each representing an “information field”
in the profile. Verbal information in an utterance is accepted
if it contains the correct information according to the target
content. One of the important applications of VIV is re-
mote speaker authentication for bank, telephone card, credit
card, benefit, and other account accesses. In these applica-
tions, a VIV system makes decision on either accepting or
rejecting a speaker based on the speaker’s spoken personal
information. This is similar to current telephone banking
procedures: after an account number is provided, an oper-
ator verifies a user by asking some personal information,
such as birth date, address, home telephone number, etc. A
user has to answer the questions correctly in order to gain
access to his or her account. Similarly, a dialog VIV system
can prompt questions with a text-to-speech synthesizer, and
verify spoken information automatically.

A major difference between speaker recognition and
VIV in speaker authentication is that speaker recognition in-
spects speakers’ speech characteristics while VIV inspects
speakers’ verbal content. The difference can be further dis-
cussed in three aspects. First, both speaker identification
and speaker verification need to train speaker dependent
(SD) models or classifiers while VIV can use speaker in-
dependent (SI) acoustic models for the purpose of verbal
content decoding. Second, speaker recognition needs an en-
rollment session to record SD speech data, and time to train
SD models while VIV does not. The user profiles are created
when users’ accounts are set up. Third, in speaker verifi-
cation, the system can reject an imposter who uses a true
speaker’s spoken password while, in VIV, it is the speakers’
responsibility to protect their personal information from im-
postors. VIV, however, can be used for automatic enrollment
of speaker recognition systems, or can be used together with
speaker recognition or verification to meet higher security
requirements.

2. APPROACHES

We have investigated two kinds of approaches for VIV using
the techniques of automatic speech recognition (ASR), Fig.
1, and utterance/speaker verification, respectively.
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Figure 1: Automatic speech recognition approach to VIV

In an ASR experiment, a VIV system was built for
speaker authentication with the three questions asked in a
row as shown in Fig. 2. A speaker is accepted if all three
questions are answered correctly, or rejected as soon as the
recognized result does not match the profile. The recog-
nition rates at each stage are also listed in Fig. 2. For
all 100 true speakers, the false rejection rate on all three



‘‘In which city/state did you grow up ?’’

Get an answer and ASR on the utterance.

Correct: 85/91 (93.41%) Wrong: 6/91 (6.59%)

Wrong: 9 (9%)Correct: 91 (91%)

Rejection

Get an answer and ASR on the utterance.

‘‘In which year were you born ?’’

100 true speakers

Rejection

‘‘May I hav your telephone number please ?’’

Get an answer and ASR on the utterance.

Correct acceptance

Wrong: 15/85 (17.65%)

on 3 utterances: 70%

False rejection

on 3 utterances: 30%

Correct: 70/85 (82.35%)

Figure 2: Verbal information verification by ASR. FR =
30% while FA = 0% on three utterances.

questions was 30% with the false acceptance rate on three
questions kept at 0%. Three sets of grammar and vocabulary
files were used to recognize the pass-utterances respectively.
The grammars include the rules for years, city/state names,
and 10-digit telephone numbers.
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Figure 3: Verification approach to VIV

From the verification point of view, the above ASR ap-
proach does not effectively utilize the information in the
profile. As shown in Fig. 3, we can use the subword tran-
scription of the text in a profile (a known correct answer) to
decode an utterance, i.e. so called forced decoding. This
will give us the subword segmentation boundaries. Then,
hypothesis test techniques can be applied to decide either
to accept or reject an utterance. This approach is similar to
the verification techniques used in speaker verification [1, 2]

and utterance verification [3, 4, 5, 6, 7]. The rest of this
paper will focus on the verification approach.

2.1. Normalized Confidence Measure

During the hypothesis test for segmented subwords, confi-
dence scores are calculated for decision. Several confidence
measures have been used in utterance verification [6, 8]. We
propose a normalized confidence measure for some practi-
cal reasons which will be discussed below. Following the
concept of inspection by variable [9] in hypothesis test, we
define a confidence measure for a decoded subword # in an
observed speech segment $&% as' %)( log *,+�$-%/. 021%4365 log *7+�$-%/. 098%43

log *7+:$ % . 0 1%;3 < + 1 3
where 021% and 098% are the corresponding target and anti mod-
els for subword unit # respectively, *,+>= 3 is the likelihood,
and assume log *7+:$-%?. 021%43A@ 0. The normalized confidence
measure for an utterance with B subwords isC ( 1B DE%GF 1

H + ' % 3 < + 2 3
where H + ' % 3 (JI 1 < if

' %LKNM ;
0 < otherwise,

+ 3 3
and M is a common subword threshold for all subwords.C

, 0 O C O 1, can be interpreted as a percentage of
acceptable subwords in an utterance, e.g.

C ( 0 = 8 means
that 80% of the subwords in an utterance are acceptable.
Thus, an utterance threshold can be determined based on the
specifications of system performance and robustness. Two
properties of the normalized measure may be desirable: a
common subword threshold, and the physical meaning on
the utterance threshold which can even be determined by
users or customers. We note that the confidence measure is
specially defined for VIV.

2.2. Multiple Thresholds and Tolerance Intervals

Once an utterance score is determined, a decision can be
made to either reject or accept an utterance, i.e.I Acceptance:

CQP KSR P
;

Rejection:
CQPUT R P

,
+ 4 3

where
CQP

and R P
are the corresponding confidence score

and threshold for utterance V . For a multiple-utterance VIV
system, either one global threshold, i.e. R ( R 1 =W=W=�( R P

,
or multiple thresholds, i.e. R 1 X( R 2 =W=W= X( R P

, can be used.
The thresholds can be either context (i.e. information field)
dependent (CD) or context independent (CI). It can also be
either speaker dependent (SD) or speaker independent (SI).



For robust verification, we define the logic of using two
global thresholds for a multiple-question trial as follows.

R P (ZY[ \ R low < when R low O C P T R high at the first time
and R low can be used only once,R high < otherwise, + 5 3

where R low and R high are two thresholds. Eq. (5) meansR low can be used only once in one verification trial. Thus, if
a speaker has only one lower score in answer utterances, the
speaker still has the chance to pass the overall verification
trial. This is useful in noisy environments or for speakers
who may not speak consistently.

To further improve the performance of a VIV system,
we use speaker and context dependent thresholds. To guar-
antee no false rejection, the upper bound of the threshold for
utterance V of a speaker can be selected as] P ( min ^ CQP�_ `ba < c ( 1 < =W=W= <ed4< + 6 3
where

C P�_ `
is the confidence score for utterance V on the c th

trials. Due to the changes on voice, channels, and environ-
ment, the same speaker may have different scores even for
the same context utterance. We define an utterance toler-
ance interval f as R P ( ] P 5 f < + 7 3
where

] P
is defined as in Eq. (6), 0 ONf T ] P

, and R P
is a CD

utterance threshold for Eq. (4). By applying the tolerance
interval, a system can still accept a speaker although his
or her utterance score

CQP
on the same context is lower

than before. For example, a speaker’s minimal confidence
measure on the answer to the V th question is

] P ( 0 = 9. If
a VIV system is designed with fg( 0 = 06%, we have R P (
0 = 9 5 0 = 06 ( 0 = 84. This means that the speaker still can be
accepted as long as 84% of the subwords of utterance V are
acceptable.

In the system evaluation, f can be reported with error
rates as a guaranteed performance interval. On the other
hand, in the system design, f can be used to determine the
thresholds based on system specifications. For example, a
bank authentication system may need a smaller f to ensure
lower false acceptance rates at a higher security level while
a voice mail system may select a larger f to reduce false
rejection rates for a user friendly security access.

2.3. Error Rates on Sequential Utterance Test

As is well known, when performing a test on a single ut-
terance, one may commit one of two errors: rejecting the
hypothesis when it is true – false rejection, or accepting it
when it is false – false acceptance. When more than one
utterance are given sequentially for speaker authentication
test, we define false rejection on h utterances ( h K 1) to be
the case where a true speaker is rejected in any one of the h

hypotheses tests, and false acceptance on h utterances to
be the case where an imposter is accepted through all h hy-
pothesis tests. An equal-error rate on h utterances (EER)
is the rate on which false rejection and false acceptance onh utterances are equal. For the following experiments, we
set hi( 3.

3. DATABASES AND HMM’S

The experimental database includes 100 English speakers.
Each speaker has 3 utterances as the answers to three ques-
tions: “In which year were you born?”, “In which city and
state did you grow up?”, and “May I have your telephone
number please?” It is a biased database since 26% of the
speakers are with birth years in the 1950’s, and 24% are in
the 1960’s. We note that there is only one digit different
among those birth years. In the city and state names, 39%
are “..., New Jersey”, and 5% of the speakers use exactly
the same address “Murray Hill, New Jersey”, which means
the verification system will give the same results on these
addresses. Thirty eight percent (38%) of telephone numbers
start from “908 582 ...”, which means that at least 60% of
the context of the telephone numbers are exactly the same
for those numbers. Also, some of the speakers have accents,
and some cities and states are in foreign countries.

In our speaker authentication experiments, a speaker is
considered as a true speaker when the speaker’s utterances
are verified against his or her profile. On the other hand, the
speaker is considered as an impostor when the utterances
are verified against other speakers’ profiles. Thus, for each
speaker, we have three utterances from the true speaker and
99 j 3 utterances from the impostors.

We used a set of 1117 right CD HMM’s as target models,
and a set of 41 CI anti-phone HMM’s as anti models [3,
6, 10]. The CD models were trained by a discriminative
learning algorithm for minimal error classification [10, 11].
ASR and forced decoding were done by the target models.
Both the target and anti models were used for verification.

4. EXPERIMENTAL RESULTS

When one common SI utterance threshold was applied to all
speakers and all questions, the EER was less than 1%. When
the two thresholds as in Eq. (5) were applied, the EER was
0.57%.

To further improve the performance of VIV, we applied
SD and CD thresholds defined in Eqs. (6) and (7) to this
experiment. There were three thresholds associated with the
three questions for each speaker. The thresholds were deter-
mined by first finding the

] P
’s as in Eq. (6) to guarantee 0%

false rejection rates. Then, the thresholds were shifted to find
the false acceptance rates on different tolerance intervals f
as defined in Eq. (7). The relation between tolerance values
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Figure 4: The system performances when FR = 0%.

and false acceptance rates on the three questions using the
normalized confidence measure are shown in Fig. 4. The
two curves represent the performances of the VIV systems
using a set of two and three questions for speaker authenti-
cation while maintaining the false rejection rate to be 0.00%.
The decision logic is that whenever one answered utterance
is not acceptable, the corresponding speaker is rejected and
no further utterances will be evaluated.

As shown in Fig. 4, using two questions, we can have
a 0% EER only when the tolerance interval f is 0, which
means that when a true speaker’s utterance score as in Eq.
(2) is lower than before the speaker will be rejected; with
three questions, the VIV system gave 0.00% EER with 6%
tolerance interval, which means when a true speaker’s ut-
terance scores are 6% lower than before (or unacceptable
phones are 6% more than before), the speaker can still be
accepted while all impostors in the database can still be
rejected correctly. This tolerance interval gives the room
for variation in the true speaker’s score to ensure a reliable
performance.

5. DISCUSSIONS AND CONCLUSIONS

In real speaker authentication applications, to avoid impos-
tors using a speaker’s personal information which is just
uttered, a VIV system may randomly ask a subset of per-
sonal information for each access. For example, the users
are registered 6 items, and each time the system randomly
picks 3 to verify. Or, the system may ask some dynamic
information recorded from the past transactions, such as the
date or the amount of the last deposit.

A practical VIV system may apply SI thresholds (5) to
new users and switch to SD thresholds when the thresholds
in (6) are determined. Such SD thresholds can be stored in
credit cards or phone cards for user authentication applica-
tions.

In conclusions, verbal information verification opens a

new area for speaker authentication. A normalized con-
fidence measure and associated hypothesis tests were pre-
sented in this paper. In the speaker authentication experi-
ments with three questions prompted sequentially, the pro-
posed VIV system achieved a 0.00% equal-error rate plus a
6% tolerance interval.
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